| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
- import json
- from paddlex.det import transforms
- import paddlex as pdx
- # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html
- train_transforms = transforms.Compose([
- transforms.RandomHorizontalFlip(), transforms.Normalize(),
- transforms.ResizeByShort(
- short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32)
- ])
- eval_transforms = transforms.Compose([
- transforms.Normalize(),
- transforms.ResizeByShort(
- short_size=800, max_size=1333),
- transforms.Padding(coarsest_stride=32),
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection
- #train_dataset = pdx.datasets.VOCDetection(
- # data_dir='dataset',
- # file_list='dataset/train_list.txt',
- # label_list='dataset/labels.txt',
- # transforms=train_transforms,
- # num_workers=2,
- # shuffle=True)
- eval_dataset = pdx.datasets.VOCDetection(
- data_dir='dataset',
- file_list='dataset/val_list.txt',
- label_list='dataset/labels.txt',
- num_workers=2,
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
- # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
- #num_classes = len(train_dataset.labels) + 1
- #
- ## API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-fasterrcnn
- #model = pdx.det.FasterRCNN(num_classes=num_classes, backbone='ResNet50_vd')
- #
- ## API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#id1
- ## 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
- #model.train(
- # num_epochs=36,
- # train_dataset=train_dataset,
- # train_batch_size=8,
- # eval_dataset=eval_dataset,
- # learning_rate=0.01,
- # lr_decay_epochs=[24, 33],
- # warmup_steps=1000,
- # pretrain_weights='ResNet50_vd_ssld_pretrained',
- # save_dir='output/guan_2',
- # use_vdl=False)
- #eval_dataset = pdx.datasets.CocoDetection(
- # data_dir='dataset_coco/JPEGImages',
- # ann_file='dataset_coco/val.json',
- # num_workers=2,
- # transforms=eval_transforms)
- #model = pdx.load_model('output/guan_4/best_model/')
- #eval_details = model.evaluate(eval_dataset, batch_size=8, return_details=True)
- class MyEncoder(json.JSONEncoder):
- def default(self, obj):
- if isinstance(obj, np.integer):
- return int(obj)
- elif isinstance(obj, np.floating):
- return float(obj)
- elif isinstance(obj, np.ndarray):
- return obj.tolist()
- else:
- return super(MyEncoder, self).default(obj)
- with open('output/guan_4/best_model/eval_details.json', 'r') as f:
- eval_details = json.load(f)
- json_path = 'output/guan_4/best_model/gt.json'
- json.dump(eval_details['gt'], open(json_path, "w"), indent=4, cls=MyEncoder)
- json_path = 'output/guan_4/best_model/bbox.json'
- json.dump(eval_details['bbox'], open(json_path, "w"), indent=4, cls=MyEncoder)
|