anomaly_detection.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.anomaly_detection.model_list import MODELS
  17. from ..components import *
  18. from ..results import SegResult
  19. from ..utils.process_hook import batchable_method
  20. from .base import CVPredictor
  21. from ..components.transforms.image.common import Map_to_mask
  22. class UadPredictor(CVPredictor):
  23. entities = MODELS
  24. _FUNC_MAP = {}
  25. register = FuncRegister(_FUNC_MAP)
  26. def _build_components(self):
  27. self._add_component(ReadImage(format="RGB"))
  28. for cfg in self.config["Deploy"]["transforms"]:
  29. tf_key = cfg["type"]
  30. func = self._FUNC_MAP.get(tf_key)
  31. cfg.pop("type")
  32. args = cfg
  33. op = func(self, **args) if args else func(self)
  34. self._add_component(op)
  35. self._add_component(ToCHWImage())
  36. predictor = ImagePredictor(
  37. model_dir=self.model_dir,
  38. model_prefix=self.MODEL_FILE_PREFIX,
  39. option=self.pp_option,
  40. )
  41. self._add_component(("Predictor", predictor))
  42. self._add_component(Map_to_mask())
  43. @register("Resize")
  44. def build_resize(
  45. self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR"
  46. ):
  47. assert target_size
  48. op = Resize(
  49. target_size=target_size,
  50. keep_ratio=keep_ratio,
  51. size_divisor=size_divisor,
  52. interp=interp,
  53. )
  54. return op
  55. @register("ResizeByLong")
  56. def build_resizebylong(self, long_size):
  57. assert long_size
  58. return ResizeByLong(
  59. target_long_edge=long_size, size_divisor=size_divisor, interp=interp
  60. )
  61. @register("ResizeByShort")
  62. def build_resizebylong(self, short_size):
  63. assert short_size
  64. return ResizeByLong(
  65. target_long_edge=short_size, size_divisor=size_divisor, interp=interp
  66. )
  67. @register("Normalize")
  68. def build_normalize(
  69. self,
  70. mean=0.5,
  71. std=0.5,
  72. ):
  73. return Normalize(mean=mean, std=std)
  74. def _pack_res(self, single):
  75. keys = ["img_path", "pred"]
  76. return SegResult({key: single[key] for key in keys})