interpret.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. import os.path as osp
  5. import paddlex as pdx
  6. from paddlex.cls import transforms
  7. # 下载和解压Imagenet果蔬分类数据集
  8. veg_dataset = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg.tar.gz'
  9. pdx.utils.download_and_decompress(veg_dataset, path='./')
  10. # 定义测试集的transform
  11. test_transforms = transforms.Compose([
  12. transforms.ResizeByShort(short_size=256),
  13. transforms.CenterCrop(crop_size=224),
  14. transforms.Normalize()
  15. ])
  16. # 定义测试所用的数据集
  17. test_dataset = pdx.datasets.ImageNet(
  18. data_dir='mini_imagenet_veg',
  19. file_list=osp.join('mini_imagenet_veg', 'test_list.txt'),
  20. label_list=osp.join('mini_imagenet_veg', 'labels.txt'),
  21. transforms=test_transforms)
  22. # 下载和解压已训练好的MobileNetV2模型
  23. model_file = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg_mobilenetv2.tar.gz'
  24. pdx.utils.download_and_decompress(model_file, path='./')
  25. # 导入模型
  26. model = pdx.load_model('mini_imagenet_veg_mobilenetv2')
  27. # 可解释性可视化
  28. save_dir = 'interpret_results'
  29. if not osp.exists(save_dir):
  30. os.makedirs(save_dir)
  31. pdx.interpret.visualize('mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
  32. model,
  33. test_dataset,
  34. algo='lime',
  35. save_dir=save_dir)
  36. pdx.interpret.visualize('mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
  37. model,
  38. test_dataset,
  39. algo='normlime',
  40. save_dir=save_dir)