1.train_ppyolov2_imagenet.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. # coding:utf-8
  2. import os
  3. # 选择使用0号卡
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. import paddlex as pdx
  6. from paddlex import transforms as T
  7. # 定义训练和验证时的transforms
  8. train_transforms = T.Compose([
  9. T.BatchRandomResize(
  10. target_sizes=[
  11. 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704,
  12. 736, 768
  13. ],
  14. interp='RANDOM'), T.Normalize(
  15. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  16. ])
  17. eval_transforms = T.Compose([
  18. T.Resize(
  19. target_size=640, interp='CUBIC'), T.Normalize(
  20. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  21. ])
  22. # 定义训练和验证所用的数据集
  23. train_dataset = pdx.datasets.VOCDetection(
  24. data_dir='/home/aistudio/dataset',
  25. file_list='/home/aistudio/dataset/train_list.txt',
  26. label_list='/home/aistudio/dataset/labels.txt',
  27. transforms=train_transforms,
  28. shuffle=True)
  29. eval_dataset = pdx.datasets.VOCDetection(
  30. data_dir='/home/aistudio/dataset',
  31. file_list='/home/aistudio/dataset/val_list.txt',
  32. label_list='/home/aistudio/dataset/labels.txt',
  33. transforms=eval_transforms,
  34. shuffle=False)
  35. # 初始化模型,并进行训练
  36. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3
  37. num_classes = len(train_dataset.labels)
  38. model = pdx.det.PPYOLOv2(num_classes=num_classes, backbone='ResNet50_vd_dcn')
  39. model.train(
  40. num_epochs=270,
  41. train_dataset=train_dataset,
  42. train_batch_size=8,
  43. eval_dataset=eval_dataset,
  44. learning_rate=0.005 / 12,
  45. warmup_steps=1000,
  46. warmup_start_lr=0.0,
  47. lr_decay_epochs=[105, 135, 150],
  48. save_interval_epochs=5,
  49. save_dir='output/ppyolov2_r50vd_dcn')