checkpoint.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import os.path as osp
  16. import paddle
  17. import paddlex.utils.logging as logging
  18. from .download import download_and_decompress
  19. seg_pretrain_weights_dict = {
  20. 'UNet': ['CITYSCAPES'],
  21. 'DeepLabV3P': ['CITYSCAPES', 'PascalVOC'],
  22. 'FastSCNN': ['CITYSCAPES'],
  23. 'HRNet': ['CITYSCAPES', 'PascalVOC'],
  24. 'BiSeNetV2': ['CITYSCAPES']
  25. }
  26. det_pretrain_weights_dict = {
  27. 'YOLOv3_MobileNetV1': ['COCO', 'PascalVOC', 'IMAGENET'],
  28. 'YOLOv3_MobileNetV1_ssld': ['COCO', 'PascalVOC', 'IMAGENET'],
  29. 'YOLOv3_DarkNet53': ['COCO', 'IMAGENET'],
  30. 'YOLOv3_ResNet50_vd_dcn': ['COCO', 'IMAGENET'],
  31. 'YOLOv3_ResNet34': ['COCO', 'IMAGENET'],
  32. 'YOLOv3_MobileNetV3': ['COCO', 'PascalVOC', 'IMAGENET'],
  33. 'YOLOv3_MobileNetV3_ssld': ['PascalVOC', 'IMAGENET'],
  34. 'FasterRCNN_ResNet50_vd': ['COCO', 'IMAGENET'],
  35. 'FasterRCNN_ResNet50_vd_fpn': ['COCO', 'IMAGENET'],
  36. 'FasterRCNN_ResNet50': ['COCO', 'IMAGENET'],
  37. 'FasterRCNN_ResNet50_fpn': ['COCO', 'IMAGENET'],
  38. 'FasterRCNN_ResNet34_fpn': ['COCO', 'IMAGENET'],
  39. 'FasterRCNN_ResNet34_vd_fpn': ['COCO', 'IMAGENET'],
  40. 'FasterRCNN_ResNet101_fpn': ['COCO', 'IMAGENET'],
  41. 'FasterRCNN_ResNet101_vd_fpn': ['COCO', 'IMAGENET'],
  42. 'FasterRCNN_ResNet50_vd_ssld_fpn': ['COCO', 'IMAGENET'],
  43. 'PPYOLO_ResNet50_vd_dcn': ['COCO', 'IMAGENET'],
  44. 'PPYOLO_ResNet18_vd': ['COCO', 'IMAGENET'],
  45. 'PPYOLO_MobileNetV3_large': ['COCO', 'IMAGENET'],
  46. 'PPYOLO_MobileNetV3_small': ['COCO', 'IMAGENET'],
  47. 'PPYOLOv2_ResNet50_vd_dcn': ['COCO', 'IMAGENET'],
  48. 'PPYOLOv2_ResNet101_vd_dcn': ['COCO', 'IMAGENET'],
  49. 'PPYOLOTiny_MobileNetV3': ['COCO', 'IMAGENET'],
  50. 'MaskRCNN_ResNet50': ['COCO', 'IMAGENET'],
  51. 'MaskRCNN_ResNet50_fpn': ['COCO', 'IMAGENET'],
  52. 'MaskRCNN_ResNet50_vd_fpn': ['COCO', 'IMAGENET'],
  53. 'MaskRCNN_ResNet50_vd_ssld_fpn': ['COCO', 'IMAGENET'],
  54. 'MaskRCNN_ResNet101_fpn': ['COCO', 'IMAGENET'],
  55. 'MaskRCNN_ResNet101_vd_fpn': ['COCO', 'IMAGENET']
  56. }
  57. cityscapes_weights = {
  58. 'UNet_CITYSCAPES':
  59. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/unet_cityscapes_1024x512_160k/model.pdparams',
  60. 'DeepLabV3P_ResNet50_vd_CITYSCAPES':
  61. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/deeplabv3p_resnet50_os8_cityscapes_1024x512_80k/model.pdparams',
  62. 'DeepLabV3P_ResNet101_vd_CITYSCAPES':
  63. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/deeplabv3p_resnet101_os8_cityscapes_769x769_80k/model.pdparams',
  64. 'HRNet_HRNet_W18_CITYSCAPES':
  65. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_hrnetw18_cityscapes_1024x512_80k/model.pdparams',
  66. 'HRNet_HRNet_W48_CITYSCAPES':
  67. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_hrnetw48_cityscapes_1024x512_80k/model.pdparams',
  68. 'BiSeNetV2_CITYSCAPES':
  69. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/bisenet_cityscapes_1024x1024_160k/model.pdparams',
  70. 'FastSCNN_CITYSCAPES':
  71. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fastscnn_cityscapes_1024x1024_160k/model.pdparams'
  72. }
  73. imagenet_weights = {
  74. 'ResNet18_IMAGENET':
  75. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams',
  76. 'ResNet34_IMAGENET':
  77. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams',
  78. 'ResNet50_IMAGENET':
  79. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams',
  80. 'ResNet101_IMAGENET':
  81. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams',
  82. 'ResNet152_IMAGENET':
  83. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams',
  84. 'ResNet18_vd_IMAGENET':
  85. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams',
  86. 'ResNet34_vd_IMAGENET':
  87. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams',
  88. 'ResNet50_vd_IMAGENET':
  89. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams',
  90. 'ResNet50_vd_ssld_IMAGENET':
  91. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams',
  92. 'ResNet101_vd_IMAGENET':
  93. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams',
  94. 'ResNet101_vd_ssld_IMAGENET':
  95. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams',
  96. 'ResNet152_vd_IMAGENET':
  97. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams',
  98. 'ResNet200_vd_IMAGENET':
  99. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams',
  100. 'MobileNetV1_IMAGENET':
  101. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams',
  102. 'MobileNetV1_x0_25_IMAGENET':
  103. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams',
  104. 'MobileNetV1_x0_5_IMAGENET':
  105. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams',
  106. 'MobileNetV1_x0_75_IMAGENET':
  107. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams',
  108. 'MobileNetV2_IMAGENET':
  109. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams',
  110. 'MobileNetV2_x0_25_IMAGENET':
  111. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams',
  112. 'MobileNetV2_x0_5_IMAGENET':
  113. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams',
  114. 'MobileNetV2_x0_75_IMAGENET':
  115. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams',
  116. 'MobileNetV2_x1_5_IMAGENET':
  117. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams',
  118. 'MobileNetV2_x2_0_IMAGENET':
  119. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams',
  120. 'MobileNetV3_small_x0_35_IMAGENET':
  121. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams',
  122. 'MobileNetV3_small_x0_5_IMAGENET':
  123. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams',
  124. 'MobileNetV3_small_x0_75_IMAGENET':
  125. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams',
  126. 'MobileNetV3_small_x1_0_IMAGENET':
  127. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams',
  128. 'MobileNetV3_small_x1_25_IMAGENET':
  129. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams',
  130. 'MobileNetV3_large_x0_35_IMAGENET':
  131. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams',
  132. 'MobileNetV3_large_x0_5_IMAGENET':
  133. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams',
  134. 'MobileNetV3_large_x0_75_IMAGENET':
  135. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams',
  136. 'MobileNetV3_large_x1_0_IMAGENET':
  137. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams',
  138. 'MobileNetV3_large_x1_25_IMAGENET':
  139. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams',
  140. 'AlexNet_IMAGENET':
  141. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams',
  142. 'DarkNet53_IMAGENET':
  143. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams',
  144. 'DenseNet121_IMAGENET':
  145. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams',
  146. 'DenseNet161_IMAGENET':
  147. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams',
  148. 'DenseNet169_IMAGENET':
  149. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams',
  150. 'DenseNet201_IMAGENET':
  151. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams',
  152. 'DenseNet264_IMAGENET':
  153. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams',
  154. 'HRNet_W18_C_IMAGENET':
  155. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams',
  156. 'HRNet_W30_C_IMAGENET':
  157. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams',
  158. 'HRNet_W32_C_IMAGENET':
  159. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams',
  160. 'HRNet_W40_C_IMAGENET':
  161. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams',
  162. 'HRNet_W44_C_IMAGENET':
  163. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams',
  164. 'HRNet_W48_C_IMAGENET':
  165. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams',
  166. 'HRNet_W64_C_IMAGENET':
  167. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams',
  168. 'Xception41_IMAGENET':
  169. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams',
  170. 'Xception65_IMAGENET':
  171. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams',
  172. 'Xception71_IMAGENET':
  173. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams',
  174. 'ShuffleNetV2_x0_25_IMAGENET':
  175. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams',
  176. 'ShuffleNetV2_x0_33_IMAGENET':
  177. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams',
  178. 'ShuffleNetV2_x0_5_IMAGENET':
  179. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams',
  180. 'ShuffleNetV2_x1_0_IMAGENET':
  181. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams',
  182. 'ShuffleNetV2_x1_5_IMAGENET':
  183. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams',
  184. 'ShuffleNetV2_x2_0_IMAGENET':
  185. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams',
  186. 'FasterRCNN_ResNet50_IMAGENET':
  187. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams',
  188. 'FasterRCNN_ResNet50_fpn_IMAGENET':
  189. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams',
  190. 'FasterRCNN_ResNet50_vd_IMAGENET':
  191. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams',
  192. 'FasterRCNN_ResNet50_vd_fpn_IMAGENET':
  193. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams',
  194. 'FasterRCNN_ResNet50_vd_ssld_fpn_IMAGENET':
  195. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams',
  196. 'FasterRCNN_ResNet34_vd_fpn_IMAGENET':
  197. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_vd_pretrained.pdparams',
  198. 'FasterRCNN_ResNet34_fpn_IMAGENET':
  199. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams',
  200. 'FasterRCNN_ResNet101_fpn_IMAGENET':
  201. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_pretrained.pdparams',
  202. 'FasterRCNN_ResNet101_vd_fpn_IMAGENET':
  203. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams',
  204. 'YOLOv3_ResNet50_vd_dcn_IMAGENET':
  205. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams',
  206. 'YOLOv3_ResNet34_IMAGENET':
  207. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams',
  208. 'YOLOv3_MobileNetV1_IMAGENET':
  209. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_pretrained.pdparams',
  210. 'YOLOv3_MobileNetV1_ssld_IMAGENET':
  211. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_ssld_pretrained.pdparams',
  212. 'YOLOv3_MobileNetV3_IMAGENET':
  213. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams',
  214. 'YOLOv3_MobileNetV3_ssld_IMAGENET':
  215. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams',
  216. 'YOLOv3_DarkNet53_IMAGENET':
  217. 'https://paddledet.bj.bcebos.com/models/pretrained/DarkNet53_pretrained.pdparams',
  218. 'PPYOLO_ResNet50_vd_dcn_IMAGENET':
  219. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams',
  220. 'PPYOLO_ResNet18_vd_IMAGENET':
  221. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet18_vd_pretrained.pdparams',
  222. 'PPYOLO_MobileNetV3_large_IMAGENET':
  223. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams',
  224. 'PPYOLO_MobileNetV3_small_IMAGENET':
  225. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_small_x1_0_ssld_pretrained.pdparams',
  226. 'PPYOLOv2_ResNet50_vd_dcn_IMAGENET':
  227. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams',
  228. 'PPYOLOv2_ResNet101_vd_dcn_IMAGENET':
  229. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_ssld_pretrained.pdparams',
  230. 'PPYOLOTiny_MobileNetV3_IMAGENET':
  231. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams',
  232. 'MaskRCNN_ResNet50_IMAGENET':
  233. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams',
  234. 'MaskRCNN_ResNet50_fpn_IMAGENET':
  235. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams',
  236. 'MaskRCNN_ResNet50_vd_fpn_IMAGENET':
  237. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams',
  238. 'MaskRCNN_ResNet50_vd_ssld_fpn_IMAGENET':
  239. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams',
  240. 'MaskRCNN_ResNet101_fpn_IMAGENET':
  241. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_pretrained.pdparams',
  242. 'MaskRCNN_ResNet101_vd_fpn_IMAGENET':
  243. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams'
  244. }
  245. pascalvoc_weights = {
  246. 'DeepLabV3P_ResNet50_vd_PascalVOC':
  247. 'https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/deeplabv3p_resnet50_os8_voc12aug_512x512_40k/model.pdparams',
  248. 'DeepLabV3P_ResNet101_vd_PascalVOC':
  249. 'https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/deeplabv3p_resnet101_os8_voc12aug_512x512_40k/model.pdparams',
  250. 'HRNet_HRNet_W18_PascalVOC':
  251. 'https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/fcn_hrnetw18_voc12aug_512x512_40k/model.pdparams',
  252. 'HRNet_HRNet_W48_PascalVOC':
  253. 'https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/fcn_hrnetw48_voc12aug_512x512_40k/model.pdparams',
  254. 'YOLOv3_MobileNetV1_PascalVOC':
  255. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams',
  256. 'YOLOv3_MobileNetV1_ssld_PascalVOC':
  257. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams',
  258. 'YOLOv3_MobileNetV3_PascalVOC':
  259. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams',
  260. 'YOLOv3_MobileNetV3_ssld_PascalVOC':
  261. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams'
  262. }
  263. coco_weights = {
  264. 'YOLOv3_MobileNetV1_COCO':
  265. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams',
  266. 'YOLOv3_MobileNetV1_ssld_COCO':
  267. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams',
  268. 'YOLOv3_DarkNet53_COCO':
  269. 'https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams',
  270. 'YOLOv3_ResNet50_vd_dcn_COCO':
  271. 'https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams',
  272. 'YOLOv3_ResNet34_COCO':
  273. 'https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams',
  274. 'YOLOv3_MobileNetV3_COCO':
  275. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams',
  276. 'FasterRCNN_ResNet50_fpn_COCO':
  277. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams',
  278. 'FasterRCNN_ResNet50_COCO':
  279. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams',
  280. 'FasterRCNN_ResNet50_vd_COCO':
  281. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams',
  282. 'FasterRCNN_ResNet50_vd_fpn_COCO':
  283. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_2x_coco.pdparams',
  284. 'FasterRCNN_ResNet50_vd_ssld_fpn_COCO':
  285. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_ssld_fpn_2x_coco.pdparams',
  286. 'FasterRCNN_ResNet34_vd_fpn_COCO':
  287. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams',
  288. 'FasterRCNN_ResNet34_fpn_COCO':
  289. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams',
  290. 'FasterRCNN_ResNet101_fpn_COCO':
  291. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_fpn_2x_coco.pdparams',
  292. 'FasterRCNN_ResNet101_vd_fpn_COCO':
  293. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams',
  294. 'PPYOLO_ResNet50_vd_dcn_COCO':
  295. 'https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams',
  296. 'PPYOLO_ResNet18_vd_COCO':
  297. 'https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams',
  298. 'PPYOLO_MobileNetV3_large_COCO':
  299. 'https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams',
  300. 'PPYOLO_MobileNetV3_small_COCO':
  301. 'https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams',
  302. 'PPYOLOv2_ResNet50_vd_dcn_COCO':
  303. 'https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams',
  304. 'PPYOLOv2_ResNet101_vd_dcn_COCO':
  305. 'https://paddledet.bj.bcebos.com/models/ppyolov2_r101vd_dcn_365e_coco.pdparams',
  306. 'PPYOLOTiny_MobileNetV3_COCO':
  307. 'https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams',
  308. 'MaskRCNN_ResNet50_COCO':
  309. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_2x_coco.pdparams',
  310. 'MaskRCNN_ResNet50_fpn_COCO':
  311. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_2x_coco.pdparams',
  312. 'MaskRCNN_ResNet50_vd_fpn_COCO':
  313. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams',
  314. 'MaskRCNN_ResNet50_vd_ssld_fpn_COCO':
  315. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams',
  316. 'MaskRCNN_ResNet101_fpn_COCO':
  317. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_fpn_1x_coco.pdparams',
  318. 'MaskRCNN_ResNet101_vd_fpn_COCO':
  319. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_vd_fpn_1x_coco.pdparams'
  320. }
  321. def get_pretrain_weights(flag, class_name, save_dir, backbone_name=None):
  322. if flag is None:
  323. return None
  324. elif osp.isdir(flag):
  325. return flag
  326. elif osp.isfile(flag):
  327. return flag
  328. # TODO: check flag
  329. new_save_dir = save_dir
  330. if backbone_name is not None:
  331. weights_key = "{}_{}_{}".format(class_name, backbone_name, flag)
  332. else:
  333. weights_key = "{}_{}".format(class_name, flag)
  334. if flag == 'CITYSCAPES':
  335. url = cityscapes_weights[weights_key]
  336. elif flag == 'IMAGENET':
  337. url = imagenet_weights[weights_key]
  338. elif flag == 'PascalVOC':
  339. url = pascalvoc_weights[weights_key]
  340. elif flag == 'COCO':
  341. url = coco_weights[weights_key]
  342. else:
  343. raise ValueError('Given pretrained weights {} is undefined.'.format(
  344. flag))
  345. fname = download_and_decompress(url, path=new_save_dir)
  346. return fname
  347. def load_pretrain_weights(model, pretrain_weights=None, model_name=None):
  348. if pretrain_weights is not None:
  349. logging.info(
  350. 'Loading pretrained model from {}'.format(pretrain_weights),
  351. use_color=True)
  352. if os.path.exists(pretrain_weights):
  353. para_state_dict = paddle.load(pretrain_weights)
  354. model_state_dict = model.state_dict()
  355. keys = model_state_dict.keys()
  356. num_params_loaded = 0
  357. for k in keys:
  358. if k not in para_state_dict:
  359. logging.warning("{} is not in pretrained model".format(k))
  360. elif list(para_state_dict[k].shape) != list(model_state_dict[k]
  361. .shape):
  362. logging.warning(
  363. "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
  364. .format(k, para_state_dict[k].shape, model_state_dict[
  365. k].shape))
  366. else:
  367. model_state_dict[k] = para_state_dict[k]
  368. num_params_loaded += 1
  369. model.set_dict(model_state_dict)
  370. logging.info("There are {}/{} variables loaded into {}.".format(
  371. num_params_loaded, len(model_state_dict), model_name))
  372. else:
  373. raise ValueError('The pretrained model directory is not Found: {}'.
  374. format(pretrain_weights))
  375. else:
  376. logging.info(
  377. 'No pretrained model to load, {} will be trained from scratch.'.
  378. format(model_name))