classifier.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import os.path as osp
  16. from collections import OrderedDict
  17. import numpy as np
  18. import paddle
  19. from paddle import to_tensor
  20. import paddle.nn.functional as F
  21. from paddle.static import InputSpec
  22. from paddlex.utils import logging, TrainingStats
  23. from paddlex.cv.models.base import BaseModel
  24. from paddlex.cv.transforms import arrange_transforms
  25. from PaddleClas.ppcls.modeling import architectures
  26. from PaddleClas.ppcls.modeling.loss import CELoss
  27. __all__ = [
  28. "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152",
  29. "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet50_vd_ssld",
  30. "ResNet101_vd", "ResNet101_vd_ssld", "ResNet152_vd", "ResNet200_vd",
  31. "AlexNet", "DarkNet53", "MobileNetV1", "MobileNetV2", "MobileNetV3_small",
  32. "MobileNetV3_large", "DenseNet121", "DenseNet161", "DenseNet169",
  33. "DenseNet201", "DenseNet264", "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C",
  34. "HRNet_W40_C", "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "Xception41",
  35. "Xception65", "Xception71", "ShuffleNetV2", "ShuffleNetV2_swish"
  36. ]
  37. class BaseClassifier(BaseModel):
  38. """Parent class of all classification models.
  39. Args:
  40. model_name (str, optional): Name of classification model. Defaults to 'ResNet50'.
  41. num_classes (int, optional): The number of target classes. Defaults to 1000.
  42. """
  43. def __init__(self, model_name='ResNet50', num_classes=1000, **params):
  44. self.init_params = locals()
  45. self.init_params.update(params)
  46. del self.init_params['params']
  47. super(BaseClassifier, self).__init__('classifier')
  48. if not hasattr(architectures, model_name):
  49. raise Exception("ERROR: There's no model named {}.".format(
  50. model_name))
  51. self.model_name = model_name
  52. self.labels = None
  53. self.num_classes = num_classes
  54. for k, v in params.items():
  55. setattr(self, k, v)
  56. self.net = self.build_net(**params)
  57. def build_net(self, **params):
  58. with paddle.utils.unique_name.guard():
  59. net = architectures.__dict__[self.model_name](
  60. class_dim=self.num_classes, **params)
  61. return net
  62. def get_test_inputs(self, image_shape):
  63. input_spec = [
  64. InputSpec(
  65. shape=[None, 3] + image_shape, name='image', dtype='float32')
  66. ]
  67. return input_spec
  68. def run(self, net, inputs, mode):
  69. net_out = net(inputs[0])
  70. softmax_out = F.softmax(net_out)
  71. if mode == 'test':
  72. outputs = OrderedDict([('prediction', softmax_out)])
  73. elif mode == 'eval':
  74. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  75. 1))
  76. acc1 = paddle.metric.accuracy(softmax_out, label=labels)
  77. k = min(5, self.num_classes)
  78. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  79. # multi cards eval
  80. if paddle.distributed.get_world_size() > 1:
  81. acc1 = paddle.distributed.all_reduce(
  82. acc1, op=paddle.distributed.ReduceOp.
  83. SUM) / paddle.distributed.get_world_size()
  84. acck = paddle.distributed.all_reduce(
  85. acck, op=paddle.distributed.ReduceOp.
  86. SUM) / paddle.distributed.get_world_size()
  87. outputs = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck),
  88. ('prediction', softmax_out)])
  89. else:
  90. # mode == 'train'
  91. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  92. 1))
  93. loss = CELoss(class_dim=self.num_classes)
  94. loss = loss(net_out, inputs[1])
  95. acc1 = paddle.metric.accuracy(softmax_out, label=labels, k=1)
  96. k = min(5, self.num_classes)
  97. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  98. outputs = OrderedDict([('loss', loss), ('acc1', acc1),
  99. ('acc{}'.format(k), acck)])
  100. return outputs
  101. def default_optimizer(self, parameters, learning_rate, warmup_steps,
  102. warmup_start_lr, lr_decay_epochs, lr_decay_gamma,
  103. num_steps_each_epoch):
  104. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  105. values = [
  106. learning_rate * (lr_decay_gamma**i)
  107. for i in range(len(lr_decay_epochs) + 1)
  108. ]
  109. scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values)
  110. if warmup_steps > 0:
  111. if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
  112. logging.error(
  113. "In function train(), parameters should satisfy: "
  114. "warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
  115. exit=False)
  116. logging.error(
  117. "See this doc for more information: "
  118. "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
  119. exit=False)
  120. logging.error(
  121. "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, "
  122. "please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
  123. format(lr_decay_epochs[0] * num_steps_each_epoch,
  124. warmup_steps // num_steps_each_epoch))
  125. scheduler = paddle.optimizer.lr.LinearWarmup(
  126. learning_rate=scheduler,
  127. warmup_steps=warmup_steps,
  128. start_lr=warmup_start_lr,
  129. end_lr=learning_rate)
  130. optimizer = paddle.optimizer.Momentum(
  131. scheduler,
  132. momentum=.9,
  133. weight_decay=paddle.regularizer.L2Decay(coeff=1e-04),
  134. parameters=parameters)
  135. return optimizer
  136. def train(self,
  137. num_epochs,
  138. train_dataset,
  139. train_batch_size=64,
  140. eval_dataset=None,
  141. optimizer=None,
  142. save_interval_epochs=1,
  143. log_interval_steps=10,
  144. save_dir='output',
  145. pretrain_weights='IMAGENET',
  146. learning_rate=.025,
  147. warmup_steps=0,
  148. warmup_start_lr=0.0,
  149. lr_decay_epochs=(30, 60, 90),
  150. lr_decay_gamma=0.1,
  151. early_stop=False,
  152. early_stop_patience=5,
  153. use_vdl=True):
  154. """
  155. Train the model.
  156. Args:
  157. num_epochs(int): The number of epochs.
  158. train_dataset(paddlex.dataset): Training dataset.
  159. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  160. eval_dataset(paddlex.dataset, optional):
  161. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  162. optimizer(paddle.optimizer.Optimizer or None, optional):
  163. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  164. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  165. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  166. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  167. pretrain_weights(str or None, optional):
  168. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
  169. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  170. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  171. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  172. lr_decay_epochs(List[int] or Tuple[int], optional):
  173. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  174. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  175. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  176. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  177. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  178. """
  179. self.labels = train_dataset.labels
  180. # build optimizer if not defined
  181. if optimizer is None:
  182. num_steps_each_epoch = len(train_dataset) // train_batch_size
  183. self.optimizer = self.default_optimizer(
  184. parameters=self.net.parameters(),
  185. learning_rate=learning_rate,
  186. warmup_steps=warmup_steps,
  187. warmup_start_lr=warmup_start_lr,
  188. lr_decay_epochs=lr_decay_epochs,
  189. lr_decay_gamma=lr_decay_gamma,
  190. num_steps_each_epoch=num_steps_each_epoch)
  191. else:
  192. self.optimizer = optimizer
  193. # initiate weights
  194. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  195. if pretrain_weights not in ['IMAGENET']:
  196. logging.warning(
  197. "Path of pretrain_weights('{}') does not exist!".format(
  198. pretrain_weights))
  199. logging.warning(
  200. "Pretrain_weights is forcibly set to 'IMAGENET'. "
  201. "If don't want to use pretrain weights, "
  202. "set pretrain_weights to be None.")
  203. pretrain_weights = 'IMAGENET'
  204. pretrained_dir = osp.join(save_dir, 'pretrain')
  205. self.net_initialize(
  206. pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
  207. # start train loop
  208. self.train_loop(
  209. num_epochs=num_epochs,
  210. train_dataset=train_dataset,
  211. train_batch_size=train_batch_size,
  212. eval_dataset=eval_dataset,
  213. save_interval_epochs=save_interval_epochs,
  214. log_interval_steps=log_interval_steps,
  215. save_dir=save_dir,
  216. early_stop=early_stop,
  217. early_stop_patience=early_stop_patience,
  218. use_vdl=use_vdl)
  219. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  220. """
  221. Evaluate the model.
  222. Args:
  223. eval_dataset(paddlex.dataset): Evaluation dataset.
  224. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  225. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  226. Returns:
  227. collections.OrderedDict with key-value pairs: {"acc1": `top 1 accuracy`, "acc5": `top 5 accuracy`}.
  228. """
  229. # 给transform添加arrange操作
  230. arrange_transforms(
  231. model_type=self.model_type,
  232. transforms=eval_dataset.transforms,
  233. mode='eval')
  234. self.net.eval()
  235. nranks = paddle.distributed.get_world_size()
  236. local_rank = paddle.distributed.get_rank()
  237. if nranks > 1:
  238. # Initialize parallel environment if not done.
  239. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  240. ):
  241. paddle.distributed.init_parallel_env()
  242. self.eval_data_loader = self.build_data_loader(
  243. eval_dataset, batch_size=batch_size, mode='eval')
  244. eval_metrics = TrainingStats()
  245. eval_details = None
  246. if return_details:
  247. eval_details = list()
  248. with paddle.no_grad():
  249. for step, data in enumerate(self.eval_data_loader()):
  250. outputs = self.run(self.net, data, mode='eval')
  251. if return_details:
  252. eval_details.append(outputs['prediction'].numpy())
  253. outputs.pop('prediction')
  254. eval_metrics.update(outputs)
  255. if return_details:
  256. return eval_metrics.get(), eval_details
  257. else:
  258. return eval_metrics.get()
  259. def predict(self, img_file, transforms=None, topk=1):
  260. """
  261. Do inference.
  262. Args:
  263. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  264. Image path or decoded image data in a BGR format, which also could constitute a list,
  265. meaning all images to be predicted as a mini-batch.
  266. transforms(paddlex.transforms.Compose or None, optional):
  267. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  268. topk(int, optional): Keep topk results in prediction. Defaults to 1.
  269. Returns:
  270. If img_file is a string or np.array, the result is a dict with key-value pairs:
  271. {"category_id": `category_id`, "category": `category`, "score": `score`}.
  272. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  273. category_id(int): the predicted category ID
  274. category(str): category name
  275. score(float): confidence
  276. """
  277. if transforms is None and not hasattr(self, 'test_transforms'):
  278. raise Exception("transforms need to be defined, now is None.")
  279. if transforms is None:
  280. transforms = self.test_transforms
  281. true_topk = min(self.num_classes, topk)
  282. if isinstance(img_file, (str, np.ndarray)):
  283. images = [img_file]
  284. else:
  285. images = img_file
  286. im = self._preprocess(images, transforms, self.model_type)
  287. self.net.eval()
  288. with paddle.no_grad():
  289. outputs = self.run(self.net, im, mode='test')
  290. prediction = outputs['prediction'].numpy()
  291. prediction = self._postprocess(prediction, true_topk, self.labels)
  292. if isinstance(img_file, (str, np.ndarray)):
  293. prediction = prediction[0]
  294. return prediction
  295. def _preprocess(self, images, transforms, model_type):
  296. arrange_transforms(
  297. model_type=model_type, transforms=transforms, mode='test')
  298. batch_im = list()
  299. for im in images:
  300. sample = {'image': im}
  301. batch_im.append(transforms(sample))
  302. batch_im = to_tensor(batch_im)
  303. return batch_im,
  304. def _postprocess(self, results, true_topk, labels):
  305. preds = list()
  306. for i, pred in enumerate(results):
  307. pred_label = np.argsort(pred)[::-1][:true_topk]
  308. preds.append([{
  309. 'category_id': l,
  310. 'category': labels[l],
  311. 'score': results[i][l]
  312. } for l in pred_label])
  313. return preds
  314. class ResNet18(BaseClassifier):
  315. def __init__(self, num_classes=1000):
  316. super(ResNet18, self).__init__(
  317. model_name='ResNet18', num_classes=num_classes)
  318. class ResNet34(BaseClassifier):
  319. def __init__(self, num_classes=1000):
  320. super(ResNet34, self).__init__(
  321. model_name='ResNet34', num_classes=num_classes)
  322. class ResNet50(BaseClassifier):
  323. def __init__(self, num_classes=1000):
  324. super(ResNet50, self).__init__(
  325. model_name='ResNet50', num_classes=num_classes)
  326. class ResNet101(BaseClassifier):
  327. def __init__(self, num_classes=1000):
  328. super(ResNet101, self).__init__(
  329. model_name='ResNet101', num_classes=num_classes)
  330. class ResNet152(BaseClassifier):
  331. def __init__(self, num_classes=1000):
  332. super(ResNet152, self).__init__(
  333. model_name='ResNet152', num_classes=num_classes)
  334. class ResNet18_vd(BaseClassifier):
  335. def __init__(self, num_classes=1000):
  336. super(ResNet18_vd, self).__init__(
  337. model_name='ResNet18_vd', num_classes=num_classes)
  338. class ResNet34_vd(BaseClassifier):
  339. def __init__(self, num_classes=1000):
  340. super(ResNet34_vd, self).__init__(
  341. model_name='ResNet34_vd', num_classes=num_classes)
  342. class ResNet50_vd(BaseClassifier):
  343. def __init__(self, num_classes=1000):
  344. super(ResNet50_vd, self).__init__(
  345. model_name='ResNet50_vd', num_classes=num_classes)
  346. class ResNet50_vd_ssld(BaseClassifier):
  347. def __init__(self, num_classes=1000):
  348. super(ResNet50_vd_ssld, self).__init__(
  349. model_name='ResNet50_vd',
  350. num_classes=num_classes,
  351. lr_mult_list=[.1, .1, .2, .2, .3])
  352. self.model_name = 'ResNet50_vd_ssld'
  353. class ResNet101_vd(BaseClassifier):
  354. def __init__(self, num_classes=1000):
  355. super(ResNet101_vd, self).__init__(
  356. model_name='ResNet101_vd', num_classes=num_classes)
  357. class ResNet101_vd_ssld(BaseClassifier):
  358. def __init__(self, num_classes=1000):
  359. super(ResNet101_vd_ssld, self).__init__(
  360. model_name='ResNet101_vd_ssld',
  361. num_classes=num_classes,
  362. lr_mult_list=[.1, .1, .2, .2, .3])
  363. self.model_name = 'ResNet101_vd_ssld'
  364. class ResNet152_vd(BaseClassifier):
  365. def __init__(self, num_classes=1000):
  366. super(ResNet152_vd, self).__init__(
  367. model_name='ResNet152_vd', num_classes=num_classes)
  368. class ResNet200_vd(BaseClassifier):
  369. def __init__(self, num_classes=1000):
  370. super(ResNet200_vd, self).__init__(
  371. model_name='ResNet200_vd', num_classes=num_classes)
  372. class AlexNet(BaseClassifier):
  373. def __init__(self, num_classes=1000):
  374. super(AlexNet, self).__init__(
  375. model_name='AlexNet', num_classes=num_classes)
  376. def get_test_inputs(self, image_shape):
  377. if image_shape == [-1, -1]:
  378. image_shape = [224, 224]
  379. logging.info('When exporting inference model for {},'.format(
  380. self.__class__.__name__
  381. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  382. )
  383. input_spec = [
  384. InputSpec(
  385. shape=[None, 3] + image_shape, name='image', dtype='float32')
  386. ]
  387. return input_spec
  388. class DarkNet53(BaseClassifier):
  389. def __init__(self, num_classes=1000):
  390. super(DarkNet53, self).__init__(
  391. model_name='DarkNet53', num_classes=num_classes)
  392. class MobileNetV1(BaseClassifier):
  393. def __init__(self, num_classes=1000, scale=1.0):
  394. supported_scale = [.25, .5, .75, 1.0]
  395. if scale not in supported_scale:
  396. logging.warning("scale={} is not supported by MobileNetV1, "
  397. "scale is forcibly set to 1.0".format(scale))
  398. scale = 1.0
  399. if scale == 1:
  400. model_name = 'MobileNetV1'
  401. else:
  402. model_name = 'MobileNetV1_x' + str(scale).replace('.', '_')
  403. self.scale = scale
  404. super(MobileNetV1, self).__init__(
  405. model_name=model_name, num_classes=num_classes)
  406. class MobileNetV2(BaseClassifier):
  407. def __init__(self, num_classes=1000, scale=1.0):
  408. supported_scale = [.25, .5, .75, 1.0, 1.5, 2.0]
  409. if scale not in supported_scale:
  410. logging.warning("scale={} is not supported by MobileNetV2, "
  411. "scale is forcibly set to 1.0".format(scale))
  412. scale = 1.0
  413. if scale == 1:
  414. model_name = 'MobileNetV2'
  415. else:
  416. model_name = 'MobileNetV2_x' + str(scale).replace('.', '_')
  417. super(MobileNetV2, self).__init__(
  418. model_name=model_name, num_classes=num_classes)
  419. class MobileNetV3_small(BaseClassifier):
  420. def __init__(self, num_classes=1000, scale=1.0):
  421. supported_scale = [.35, .5, .75, 1.0, 1.25]
  422. if scale not in supported_scale:
  423. logging.warning("scale={} is not supported by MobileNetV3_small, "
  424. "scale is forcibly set to 1.0".format(scale))
  425. scale = 1.0
  426. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  427. '_')
  428. super(MobileNetV3_small, self).__init__(
  429. model_name=model_name, num_classes=num_classes)
  430. class MobileNetV3_large(BaseClassifier):
  431. def __init__(self, num_classes=1000, scale=1.0):
  432. supported_scale = [.35, .5, .75, 1.0, 1.25]
  433. if scale not in supported_scale:
  434. logging.warning("scale={} is not supported by MobileNetV3_large, "
  435. "scale is forcibly set to 1.0".format(scale))
  436. scale = 1.0
  437. model_name = 'MobileNetV3_large_x' + str(float(scale)).replace('.',
  438. '_')
  439. super(MobileNetV3_large, self).__init__(
  440. model_name=model_name, num_classes=num_classes)
  441. class DenseNet121(BaseClassifier):
  442. def __init__(self, num_classes=1000):
  443. super(DenseNet121, self).__init__(
  444. model_name='DenseNet121', num_classes=num_classes)
  445. class DenseNet161(BaseClassifier):
  446. def __init__(self, num_classes=1000):
  447. super(DenseNet161, self).__init__(
  448. model_name='DenseNet161', num_classes=num_classes)
  449. class DenseNet169(BaseClassifier):
  450. def __init__(self, num_classes=1000):
  451. super(DenseNet169, self).__init__(
  452. model_name='DenseNet169', num_classes=num_classes)
  453. class DenseNet201(BaseClassifier):
  454. def __init__(self, num_classes=1000):
  455. super(DenseNet201, self).__init__(
  456. model_name='DenseNet201', num_classes=num_classes)
  457. class DenseNet264(BaseClassifier):
  458. def __init__(self, num_classes=1000):
  459. super(DenseNet264, self).__init__(
  460. model_name='DenseNet264', num_classes=num_classes)
  461. class HRNet_W18_C(BaseClassifier):
  462. def __init__(self, num_classes=1000):
  463. super(HRNet_W18_C, self).__init__(
  464. model_name='HRNet_W18_C', num_classes=num_classes)
  465. class HRNet_W30_C(BaseClassifier):
  466. def __init__(self, num_classes=1000):
  467. super(HRNet_W30_C, self).__init__(
  468. model_name='HRNet_W30_C', num_classes=num_classes)
  469. class HRNet_W32_C(BaseClassifier):
  470. def __init__(self, num_classes=1000):
  471. super(HRNet_W32_C, self).__init__(
  472. model_name='HRNet_W32_C', num_classes=num_classes)
  473. class HRNet_W40_C(BaseClassifier):
  474. def __init__(self, num_classes=1000):
  475. super(HRNet_W40_C, self).__init__(
  476. model_name='HRNet_W40_C', num_classes=num_classes)
  477. class HRNet_W44_C(BaseClassifier):
  478. def __init__(self, num_classes=1000):
  479. super(HRNet_W44_C, self).__init__(
  480. model_name='HRNet_W44_C', num_classes=num_classes)
  481. class HRNet_W48_C(BaseClassifier):
  482. def __init__(self, num_classes=1000):
  483. super(HRNet_W48_C, self).__init__(
  484. model_name='HRNet_W48_C', num_classes=num_classes)
  485. class HRNet_W64_C(BaseClassifier):
  486. def __init__(self, num_classes=1000):
  487. super(HRNet_W64_C, self).__init__(
  488. model_name='HRNet_W64_C', num_classes=num_classes)
  489. class Xception41(BaseClassifier):
  490. def __init__(self, num_classes=1000):
  491. super(Xception41, self).__init__(
  492. model_name='Xception41', num_classes=num_classes)
  493. class Xception65(BaseClassifier):
  494. def __init__(self, num_classes=1000):
  495. super(Xception65, self).__init__(
  496. model_name='Xception65', num_classes=num_classes)
  497. class Xception71(BaseClassifier):
  498. def __init__(self, num_classes=1000):
  499. super(Xception71, self).__init__(
  500. model_name='Xception71', num_classes=num_classes)
  501. class ShuffleNetV2(BaseClassifier):
  502. def __init__(self, num_classes=1000, scale=1.0):
  503. supported_scale = [.25, .33, .5, 1.0, 1.5, 2.0]
  504. if scale not in supported_scale:
  505. logging.warning("scale={} is not supported by ShuffleNetV2, "
  506. "scale is forcibly set to 1.0".format(scale))
  507. scale = 1.0
  508. model_name = 'ShuffleNetV2_x' + str(float(scale)).replace('.', '_')
  509. super(ShuffleNetV2, self).__init__(
  510. model_name=model_name, num_classes=num_classes)
  511. def get_test_inputs(self, image_shape):
  512. if image_shape == [-1, -1]:
  513. image_shape = [224, 224]
  514. logging.info('When exporting inference model for {},'.format(
  515. self.__class__.__name__
  516. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  517. )
  518. input_spec = [
  519. InputSpec(
  520. shape=[None, 3] + image_shape, name='image', dtype='float32')
  521. ]
  522. return input_spec
  523. class ShuffleNetV2_swish(BaseClassifier):
  524. def __init__(self, num_classes=1000):
  525. super(ShuffleNetV2_swish, self).__init__(
  526. model_name='ShuffleNetV2_x1_5', num_classes=num_classes)
  527. def get_test_inputs(self, image_shape):
  528. if image_shape == [-1, -1]:
  529. image_shape = [224, 224]
  530. logging.info('When exporting inference model for {},'.format(
  531. self.__class__.__name__
  532. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  533. )
  534. input_spec = [
  535. InputSpec(
  536. shape=[None, 3] + image_shape, name='image', dtype='float32')
  537. ]
  538. return input_spec