| 12345678910111213141516171819202122232425262728293031323334353637383940 |
- import os
- import cv2
- import numpy as np
- from PIL import Image
- import paddlex as pdx
- model_dir = "output/unet_1/best_model/"
- save_dir = 'output/gt_pred'
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- color = [0, 0, 0, 255, 255, 255]
- model = pdx.load_model(model_dir)
- with open('tiled_dataset/val_list.txt', 'r') as f:
- for line in f:
- items = line.strip().split()
- img_file_1 = os.path.join('tiled_dataset', items[0])
- img_file_2 = os.path.join('tiled_dataset', items[1])
- label_file = os.path.join('tiled_dataset', items[2])
- # 预测并可视化预测结果
- im1 = cv2.imread(img_file_1)
- im2 = cv2.imread(img_file_2)
- image = np.concatenate((im1, im2), axis=-1)
- pred = model.predict(image)
- vis_pred = pdx.seg.visualize(
- img_file_1, pred, weight=0., save_dir=None, color=color)
- # 可视化标注文件
- label = np.asarray(Image.open(label_file))
- pred = {'label_map': label}
- vis_gt = pdx.seg.visualize(
- img_file_1, pred, weight=0., save_dir=None, color=color)
- ims = cv2.hconcat([im1, im2])
- labels = cv2.hconcat([vis_gt, vis_pred])
- data = cv2.vconcat([ims, labels])
- cv2.imwrite("{}/{}".format(save_dir, items[0].split('/')[-1]), data)
|