OCRNet_HRNet-W18.yaml 972 B

12345678910111213141516171819202122232425262728293031323334353637383940
  1. Global:
  2. model: OCRNet_HRNet-W18
  3. mode: check_dataset # check_dataset/train/evaluate/predict
  4. dataset_dir: "/paddle/dataset/paddlex/seg/seg_optic_examples"
  5. device: gpu:0,1,2,3
  6. output: "output"
  7. CheckDataset:
  8. convert:
  9. enable: False
  10. src_dataset_type: null
  11. split:
  12. enable: False
  13. train_percent: null
  14. val_percent: null
  15. Train:
  16. epochs_iters: 500
  17. num_classes: 2
  18. batch_size: 2
  19. learning_rate: 0.01
  20. pretrain_weight_path: null
  21. warmup_steps: 0
  22. resume_path: null
  23. log_interval: 10
  24. eval_interval: 100
  25. Evaluate:
  26. weight_path: "output/best_model/model.pdparams"
  27. log_interval: 10
  28. Export:
  29. weight_path: https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ocrnet_hrnetw18_cityscapes_1024x512_160k/model.pdparams
  30. Predict:
  31. model_dir: "output/best_model/model"
  32. input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
  33. kernel_option:
  34. run_mode: paddle
  35. batch_size: 1