client.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. #!/usr/bin/env python
  2. import argparse
  3. import pprint
  4. import sys
  5. from ast import literal_eval
  6. from paddlex_hps_client import triton_request, utils
  7. from tritonclient import grpc as triton_grpc
  8. OUTPUT_IMAGE_PATH = "out.jpg"
  9. def main():
  10. parser = argparse.ArgumentParser()
  11. parser.add_argument("--image", type=str, required=True)
  12. parser.add_argument("--prompt", type=str, required=True)
  13. parser.add_argument("--prompt_type", type=str, required=True)
  14. parser.add_argument("--no-visualization", action="store_true")
  15. parser.add_argument("--url", type=str, default="localhost:8001")
  16. args = parser.parse_args()
  17. assert args.prompt_type in (
  18. "box",
  19. "point",
  20. ), "Only support 'box' or 'point' prompt_type"
  21. client = triton_grpc.InferenceServerClient(args.url)
  22. input_ = {
  23. "image": utils.prepare_input_file(args.image),
  24. "prompt": literal_eval(args.prompt),
  25. "promptType": args.prompt_type,
  26. }
  27. if args.no_visualization:
  28. input_["visualize"] = False
  29. output = triton_request(client, "open-vocabulary-segmentation", input_)
  30. if output["errorCode"] != 0:
  31. print(f"Error code: {output['errorCode']}", file=sys.stderr)
  32. print(f"Error message: {output['errorMsg']}", file=sys.stderr)
  33. sys.exit(1)
  34. result = output["result"]
  35. utils.save_output_file(result["image"], OUTPUT_IMAGE_PATH)
  36. print(f"Output image saved at {OUTPUT_IMAGE_PATH}")
  37. print("\nMask Infos:")
  38. pprint.pp(result["maskInfos"])
  39. if __name__ == "__main__":
  40. main()