| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import tarfile
- from pathlib import Path
- from ..base import BaseTrainer
- from .model_list import MODELS
- class TSFCTrainer(BaseTrainer):
- """TS Forecast Model Trainer"""
- entities = MODELS
- def train(self):
- """firstly, update and dump train config, then train model"""
- # XXX: using super().train() instead when the train_hook() is supported.
- os.makedirs(self.global_config.output, exist_ok=True)
- self.update_config()
- self.dump_config()
- train_args = self.get_train_kwargs()
- export_with_pir = self.global_config.get("export_with_pir", False) or os.getenv(
- "FLAGS_json_format_model"
- ) in ["1", "True"]
- train_args.update(
- {
- "uniform_output_enabled": self.train_config.get(
- "uniform_output_enabled", True
- ),
- "export_with_pir": export_with_pir,
- }
- )
- if self.benchmark_config is not None:
- train_args.update({"benchmark": self.benchmark_config})
- train_result = self.pdx_model.train(**train_args)
- assert (
- train_result.returncode == 0
- ), f"Encountered an unexpected error({train_result.returncode}) in \
- training!"
- self.make_tar_file()
- def make_tar_file(self):
- """make tar file to package the training outputs"""
- tar_path = Path(self.global_config.output) / "best_accuracy.pdparams.tar"
- with tarfile.open(tar_path, "w") as tar:
- tar.add(self.global_config.output, arcname="best_accuracy.pdparams")
- def update_config(self):
- """update training config"""
- self.pdx_config.update_dataset(self.global_config.dataset_dir, "TSDataset")
- if self.train_config.input_len is not None:
- self.pdx_config.update_input_len(self.train_config.input_len)
- if self.train_config.time_col is not None:
- self.pdx_config.update_basic_info({"time_col": self.train_config.time_col})
- if self.train_config.target_cols is not None:
- self.pdx_config.update_basic_info(
- {"target_cols": self.train_config.target_cols.split(",")}
- )
- if self.train_config.freq is not None:
- try:
- self.train_config.freq = int(self.train_config.freq)
- except ValueError:
- pass
- self.pdx_config.update_basic_info({"freq": self.train_config.freq})
- if self.train_config.predict_len is not None:
- self.pdx_config.update_predict_len(self.train_config.predict_len)
- if self.train_config.patience is not None:
- self.pdx_config.update_patience(self.train_config.patience)
- if self.train_config.batch_size is not None:
- self.pdx_config.update_batch_size(self.train_config.batch_size)
- if self.train_config.learning_rate is not None:
- self.pdx_config.update_learning_rate(self.train_config.learning_rate)
- if self.train_config.epochs_iters is not None:
- self.pdx_config.update_epochs(self.train_config.epochs_iters)
- if self.train_config.log_interval is not None:
- self.pdx_config.update_log_interval(self.train_config.log_interval)
- if self.train_config.get("dy2st", False):
- self.pdx_config.update_to_static(self.train_config.dy2st)
- if self.global_config.output is not None:
- self.pdx_config.update_save_dir(self.global_config.output)
- def get_train_kwargs(self) -> dict:
- """get key-value arguments of model training function
- Returns:
- dict: the arguments of training function.
- """
- train_args = {"device": self.get_device(using_device_number=1)}
- if self.global_config.output is not None:
- train_args["save_dir"] = self.global_config.output
- return train_args
|