| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import codecs
- import yaml
- from ...base.predictor.transforms import image_common
- from . import transforms as T
- class InnerConfig(object):
- """Inner Config"""
- def __init__(self, config_path):
- self.inner_cfg = self.load(config_path)
- def load(self, config_path):
- """load infer config"""
- with codecs.open(config_path, "r", "utf-8") as file:
- dic = yaml.load(file, Loader=yaml.FullLoader)
- return dic
- @property
- def pre_transforms(self):
- """read preprocess transforms from config file"""
- if "RecPreProcess" in list(self.inner_cfg.keys()):
- tfs_cfg = self.inner_cfg["RecPreProcess"]["transform_ops"]
- else:
- tfs_cfg = self.inner_cfg["PreProcess"]["transform_ops"]
- tfs = []
- for cfg in tfs_cfg:
- tf_key = list(cfg.keys())[0]
- if tf_key == "NormalizeImage":
- tf = image_common.Normalize(
- mean=cfg["NormalizeImage"].get("mean", [0.485, 0.456, 0.406]),
- std=cfg["NormalizeImage"].get("std", [0.229, 0.224, 0.225]),
- )
- elif tf_key == "ResizeImage":
- if "resize_short" in list(cfg[tf_key].keys()):
- tf = image_common.ResizeByShort(
- target_short_edge=cfg["ResizeImage"].get("resize_short", 224),
- size_divisor=None,
- interp="LINEAR",
- )
- else:
- tf = image_common.Resize(
- target_size=cfg["ResizeImage"].get("size", (224, 224))
- )
- elif tf_key == "CropImage":
- tf = image_common.Crop(crop_size=cfg["CropImage"].get("size", 224))
- elif tf_key == "ToCHWImage":
- tf = image_common.ToCHWImage()
- else:
- raise RuntimeError(f"Unsupported type: {tf_key}")
- tfs.append(tf)
- return tfs
- @property
- def post_transforms(self):
- """read postprocess transforms from config file"""
- IGNORE_OPS = ["main_indicator", "SavePreLabel"]
- tfs_cfg = self.inner_cfg["PostProcess"]
- tfs = []
- for tf_key in tfs_cfg:
- if tf_key == "Topk":
- tf = T.Topk(
- topk=tfs_cfg["Topk"]["topk"],
- class_ids=tfs_cfg["Topk"].get("label_list", None),
- )
- elif tf_key == "MultiLabelThreshOutput":
- tf = T.MultiLabelThreshOutput(
- threshold=0.5,
- class_ids=tfs_cfg["MultiLabelThreshOutput"].get("label_list", None),
- )
- elif tf_key in IGNORE_OPS:
- continue
- else:
- raise RuntimeError(f"Unsupported type: {tf_key}")
- tfs.append(tf)
- return tfs
- @property
- def labels(self):
- """the labels in inner config"""
- postprocess_name = self.inner_cfg["PostProcess"].keys()
- if "Topk" in postprocess_name:
- return self.inner_cfg["PostProcess"]["Topk"].get("label_list", None)
- elif "MultiLabelThreshOutput" in postprocess_name:
- return self.inner_cfg["PostProcess"]["MultiLabelThreshOutput"].get(
- "label_list", None
- )
- else:
- return None
|