pipeline.py 2.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from ..base import BasePipeline
  15. from ...modules.object_detection.model_list import MODELS
  16. from ...modules import create_model, PaddleInferenceOption
  17. from ...modules.object_detection import transforms as T
  18. class DetPipeline(BasePipeline):
  19. """Det Pipeline
  20. """
  21. entities = "object_detection"
  22. def __init__(self,
  23. model_name=None,
  24. model_dir=None,
  25. output="./output",
  26. kernel_option=None,
  27. device="gpu",
  28. **kwargs):
  29. self.model_name = model_name
  30. self.model_dir = model_dir
  31. self.output = output
  32. self.device = device
  33. self.kernel_option = kernel_option
  34. if self.model_name is not None:
  35. self.load_model()
  36. def check_model_name(self):
  37. """ check that model name is valid
  38. """
  39. assert self.model_name in MODELS, f"The model name({self.model_name}) error. Only support: {MODELS}."
  40. def load_model(self):
  41. """load model predictor
  42. """
  43. self.check_model_name()
  44. kernel_option = self.get_kernel_option(
  45. ) if self.kernel_option is None else self.kernel_option
  46. self.model = create_model(
  47. model_name=self.model_name,
  48. model_dir=self.model_dir,
  49. output=self.output,
  50. kernel_option=kernel_option)
  51. def predict(self, input):
  52. """predict
  53. """
  54. return self.model.predict(input)
  55. def get_kernel_option(self):
  56. """get kernel option
  57. """
  58. kernel_option = PaddleInferenceOption()
  59. kernel_option.set_device(self.device)
  60. def update_model_name(self, model_name_list):
  61. """update model name and re
  62. Args:
  63. model_list (list): list of model name.
  64. """
  65. assert len(model_name_list) == 1
  66. self.model_name = model_name_list[0]
  67. def get_input_keys(self):
  68. """get dict keys of input argument input
  69. """
  70. return self.model.get_input_keys()