mask_rcnn_hrnet_fpn.py 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.det import transforms
  5. import paddlex as pdx
  6. # 下载和解压小度熊分拣数据集
  7. xiaoduxiong_dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
  8. pdx.utils.download_and_decompress(xiaoduxiong_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.RandomHorizontalFlip(),
  12. transforms.Normalize(),
  13. transforms.ResizeByShort(short_size=800, max_size=1333),
  14. transforms.Padding(coarsest_stride=32)
  15. ])
  16. eval_transforms = transforms.Compose([
  17. transforms.Normalize(),
  18. transforms.ResizeByShort(short_size=800, max_size=1333),
  19. transforms.Padding(coarsest_stride=32),
  20. ])
  21. # 定义训练和验证所用的数据集
  22. train_dataset = pdx.datasets.CocoDetection(
  23. data_dir='xiaoduxiong_ins_det/JPEGImages',
  24. ann_file='xiaoduxiong_ins_det/train.json',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.CocoDetection(
  28. data_dir='xiaoduxiong_ins_det/JPEGImages',
  29. ann_file='xiaoduxiong_ins_det/val.json',
  30. transforms=eval_transforms)
  31. # 初始化模型,并进行训练
  32. # 可使用VisualDL查看训练指标
  33. # VisualDL启动方式: visualdl --logdir output/mask_rcnn_r50_fpn/vdl_log --port 8001
  34. # 浏览器打开 https://0.0.0.0:8001即可
  35. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  36. # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
  37. num_classes = len(train_dataset.labels) + 1
  38. model = pdx.det.MaskRCNN(num_classes=num_classes, backbone='HRNet_W18')
  39. model.train(
  40. num_epochs=12,
  41. train_dataset=train_dataset,
  42. train_batch_size=1,
  43. eval_dataset=eval_dataset,
  44. learning_rate=0.00125,
  45. warmup_steps=10,
  46. lr_decay_epochs=[8, 11],
  47. save_dir='output/mask_rcnn_hrnet_fpn',
  48. use_vdl=True)