| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- import os
- # 选择使用0号卡
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- from paddlex.det import transforms
- import paddlex as pdx
- # 下载和解压小度熊分拣数据集
- xiaoduxiong_dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
- pdx.utils.download_and_decompress(xiaoduxiong_dataset, path='./')
- # 定义训练和验证时的transforms
- train_transforms = transforms.Compose([
- transforms.RandomHorizontalFlip(),
- transforms.Normalize(),
- transforms.ResizeByShort(short_size=800, max_size=1333),
- transforms.Padding(coarsest_stride=32)
- ])
- eval_transforms = transforms.Compose([
- transforms.Normalize(),
- transforms.ResizeByShort(short_size=800, max_size=1333),
- transforms.Padding(coarsest_stride=32),
- ])
- # 定义训练和验证所用的数据集
- train_dataset = pdx.datasets.CocoDetection(
- data_dir='xiaoduxiong_ins_det/JPEGImages',
- ann_file='xiaoduxiong_ins_det/train.json',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.CocoDetection(
- data_dir='xiaoduxiong_ins_det/JPEGImages',
- ann_file='xiaoduxiong_ins_det/val.json',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标
- # VisualDL启动方式: visualdl --logdir output/mask_rcnn_r50_fpn/vdl_log --port 8001
- # 浏览器打开 https://0.0.0.0:8001即可
- # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
- # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
- num_classes = len(train_dataset.labels) + 1
- model = pdx.det.MaskRCNN(num_classes=num_classes, backbone='HRNet_W18')
- model.train(
- num_epochs=12,
- train_dataset=train_dataset,
- train_batch_size=1,
- eval_dataset=eval_dataset,
- learning_rate=0.00125,
- warmup_steps=10,
- lr_decay_epochs=[8, 11],
- save_dir='output/mask_rcnn_hrnet_fpn',
- use_vdl=True)
|