| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- import os
- from paddlex.det import transforms
- import paddlex as pdx
- # 下载和解压昆虫检测数据集
- insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
- pdx.utils.download_and_decompress(insect_dataset, path='./')
- # 定义训练和验证时的transforms
- train_transforms = transforms.Compose([
- transforms.RandomHorizontalFlip(),
- transforms.Normalize(),
- transforms.ResizeByShort(short_size=800, max_size=1333),
- transforms.Padding(coarsest_stride=32)
- ])
- eval_transforms = transforms.Compose([
- transforms.Normalize(),
- transforms.ResizeByShort(short_size=800, max_size=1333),
- transforms.Padding(coarsest_stride=32),
- ])
- # 定义训练和验证所用的数据集
- train_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/train_list.txt',
- label_list='insect_det/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/val_list.txt',
- label_list='insect_det/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标
- # VisualDL启动方式: visualdl --logdir output/faster_rcnn_r50_fpn/vdl_log --port 8001
- # 浏览器打开 https://0.0.0.0:8001即可
- # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
- # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
- num_classes = len(train_dataset.labels) + 1
- model = pdx.det.FasterRCNN(num_classes=num_classes, backbone='ResNet50_vd')
- model.train(
- num_epochs=12,
- train_dataset=train_dataset,
- train_batch_size=2,
- eval_dataset=eval_dataset,
- learning_rate=0.0025,
- lr_decay_epochs=[8, 11],
- save_dir='output/faster_rcnn_r50_fpn',
- use_vdl=True)
|