yolov3_mobilenetv1.py 1.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. import os
  2. from paddlex.det import transforms
  3. import paddlex as pdx
  4. # 下载和解压昆虫检测数据集
  5. insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  6. pdx.utils.download_and_decompress(insect_dataset, path='./')
  7. # 定义训练和验证时的transforms
  8. train_transforms = transforms.Compose([
  9. transforms.MixupImage(mixup_epoch=250),
  10. transforms.RandomDistort(),
  11. transforms.RandomExpand(),
  12. transforms.RandomCrop(),
  13. transforms.Resize(target_size=608, interp='RANDOM'),
  14. transforms.RandomHorizontalFlip(),
  15. transforms.Normalize(),
  16. ])
  17. eval_transforms = transforms.Compose([
  18. transforms.Resize(target_size=608, interp='CUBIC'),
  19. transforms.Normalize(),
  20. ])
  21. # 定义训练和验证所用的数据集
  22. train_dataset = pdx.datasets.VOCDetection(
  23. data_dir='insect_det',
  24. file_list='insect_det/train_list.txt',
  25. label_list='insect_det/labels.txt',
  26. transforms=train_transforms,
  27. shuffle=True)
  28. eval_dataset = pdx.datasets.VOCDetection(
  29. data_dir='insect_det',
  30. file_list='insect_det/val_list.txt',
  31. label_list='insect_det/labels.txt',
  32. transforms=eval_transforms)
  33. # 初始化模型,并进行训练
  34. # 可使用VisualDL查看训练指标
  35. # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
  36. # 浏览器打开 https://0.0.0.0:8001即可
  37. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  38. num_classes = len(train_dataset.labels)
  39. model = pdx.det.YOLOv3(num_classes=num_classes, backbone='MobileNetV1')
  40. model.train(
  41. num_epochs=270,
  42. train_dataset=train_dataset,
  43. train_batch_size=8,
  44. eval_dataset=eval_dataset,
  45. learning_rate=0.000125,
  46. lr_decay_epochs=[210, 240],
  47. save_dir='output/yolov3_mobilenetv1',
  48. use_vdl=True)