unet.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. import paddlex as pdx
  5. from paddlex.seg import transforms
  6. # 下载和解压视盘分割数据集
  7. optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
  8. pdx.utils.download_and_decompress(optic_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.RandomHorizontalFlip(),
  12. transforms.ResizeRangeScaling(),
  13. transforms.RandomPaddingCrop(crop_size=512),
  14. transforms.Normalize()
  15. ])
  16. eval_transforms = transforms.Compose([
  17. transforms.ResizeByLong(long_size=512), transforms.Padding(target_size=512),
  18. transforms.Normalize()
  19. ])
  20. # 定义训练和验证所用的数据集
  21. train_dataset = pdx.datasets.SegDataset(
  22. data_dir='optic_disc_seg',
  23. file_list='optic_disc_seg/train_list.txt',
  24. label_list='optic_disc_seg/labels.txt',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.SegDataset(
  28. data_dir='optic_disc_seg',
  29. file_list='optic_disc_seg/val_list.txt',
  30. label_list='optic_disc_seg/labels.txt',
  31. transforms=eval_transforms)
  32. # 初始化模型,并进行训练
  33. # 可使用VisualDL查看训练指标
  34. # VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001
  35. # 浏览器打开 https://0.0.0.0:8001即可
  36. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  37. num_classes = len(train_dataset.labels)
  38. model = pdx.seg.UNet(num_classes=num_classes)
  39. model.train(
  40. num_epochs=20,
  41. train_dataset=train_dataset,
  42. train_batch_size=4,
  43. eval_dataset=eval_dataset,
  44. learning_rate=0.01,
  45. save_dir='output/unet',
  46. use_vdl=True)