pipeline.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. from ...models.instance_segmentation.result import InstanceSegResult
  19. class InstanceSegmentationPipeline(BasePipeline):
  20. """Instance Segmentation Pipeline"""
  21. entities = "instance_segmentation"
  22. def __init__(
  23. self,
  24. config: Dict,
  25. device: str = None,
  26. pp_option: PaddlePredictorOption = None,
  27. use_hpip: bool = False,
  28. ) -> None:
  29. """
  30. Initializes the class with given configurations and options.
  31. Args:
  32. config (Dict): Configuration dictionary containing model and other parameters.
  33. device (str): The device to run the prediction on. Default is None.
  34. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  35. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  36. """
  37. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  38. instance_segmentation_model_config = config["SubModules"][
  39. "InstanceSegmentation"
  40. ]
  41. self.instance_segmentation_model = self.create_model(
  42. instance_segmentation_model_config
  43. )
  44. self.threshold = instance_segmentation_model_config["threshold"]
  45. def predict(
  46. self,
  47. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  48. threshold: Union[float, None] = None,
  49. **kwargs
  50. ) -> InstanceSegResult:
  51. """Predicts instance segmentation results for the given input.
  52. Args:
  53. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  54. threshold (Union[float, None]): The threshold value to filter out low-confidence predictions. Default is None.
  55. **kwargs: Additional keyword arguments that can be passed to the function.
  56. Returns:
  57. InstanceSegResult: The predicted instance segmentation results.
  58. """
  59. yield from self.instance_segmentation_model(input, threshold=threshold)