| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ...utils.io import ImageReader
- from ..base import BaseComponent
- def restructured_boxes(boxes, labels):
- return [
- {
- "cls_id": int(box[0]),
- "label": labels[int(box[0])],
- "score": float(box[1]),
- "coordinate": list(map(int, box[2:])),
- }
- for box in boxes
- ]
- class DetPostProcess(BaseComponent):
- """Save Result Transform"""
- INPUT_KEYS = ["img_path", "boxes"]
- OUTPUT_KEYS = ["boxes"]
- DEAULT_INPUTS = {"boxes": "boxes"}
- DEAULT_OUTPUTS = {"boxes": "boxes"}
- def __init__(self, threshold=0.5, labels=None):
- super().__init__()
- self.threshold = threshold
- self.labels = labels
- def apply(self, boxes):
- """apply"""
- expect_boxes = (boxes[:, 1] > self.threshold) & (boxes[:, 0] > -1)
- boxes = boxes[expect_boxes, :]
- boxes = restructured_boxes(boxes, self.labels)
- result = {"boxes": boxes}
- return result
- class CropByBoxes(BaseComponent):
- """Crop Image by Box"""
- INPUT_KEYS = ["img_path", "boxes", "labels"]
- OUTPUT_KEYS = ["img", "box", "label"]
- DEAULT_INPUTS = {"img_path": "img_path", "boxes": "boxes", "labels": "labels"}
- DEAULT_OUTPUTS = {"img": "img", "box": "box", "label": "label"}
- def __init__(self):
- super().__init__()
- self._reader = ImageReader(backend="opencv")
- def apply(self, img_path, boxes, labels=None):
- output_list = []
- img = self._reader.read(img_path)
- for bbox in boxes:
- label_id = int(bbox[0])
- box = bbox[2:]
- if labels is not None:
- label = labels[label_id]
- else:
- label = label_id
- xmin, ymin, xmax, ymax = [int(i) for i in box]
- img_crop = img[ymin:ymax, xmin:xmax]
- output_list.append({"img": img_crop, "box": box, "label": label})
- return output_list
|