ocr.py 1.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from .base import BasePipeline
  15. from ..components import CropByPolys
  16. from ..results import OCRResult
  17. class OCRPipeline(BasePipeline):
  18. """OCR Pipeline"""
  19. entities = "ocr"
  20. def __init__(
  21. self, det_model, rec_model, rec_batch_size, predictor_kwargs=None, is_curve=False, **kwargs
  22. ):
  23. super().__init__(predictor_kwargs)
  24. self._det_predict = self._create_predictor(det_model)
  25. self._rec_predict = self._create_predictor(rec_model, batch_size=rec_batch_size)
  26. # TODO: foo
  27. if is_curve:
  28. det_box_type = 'poly'
  29. else:
  30. det_box_type = 'quad'
  31. self._crop_by_polys = CropByPolys(det_box_type=det_box_type)
  32. def predict(self, x):
  33. for det_res in self._det_predict(x):
  34. single_img_res = det_res
  35. single_img_res["rec_text"] = []
  36. single_img_res["rec_score"] = []
  37. if len(single_img_res["dt_polys"]) > 0:
  38. all_subs_of_img = list(self._crop_by_polys(single_img_res))
  39. for rec_res in self._rec_predict(all_subs_of_img):
  40. single_img_res["rec_text"].append(rec_res["rec_text"])
  41. single_img_res["rec_score"].append(rec_res["rec_score"])
  42. yield single_img_res