| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- from __future__ import absolute_import
- import math
- import tqdm
- import os.path as osp
- import numpy as np
- import paddle.fluid as fluid
- import paddlex.utils.logging as logging
- import paddlex
- from .base import BaseAPI
- from collections import OrderedDict
- from .utils.detection_eval import eval_results, bbox2out
- import copy
- class YOLOv3(BaseAPI):
- """构建YOLOv3,并实现其训练、评估、预测和模型导出。
- Args:
- num_classes (int): 类别数。默认为80。
- backbone (str): YOLOv3的backbone网络,取值范围为['DarkNet53',
- 'ResNet34', 'MobileNetV1', 'MobileNetV3_large']。默认为'MobileNetV1'。
- anchors (list|tuple): anchor框的宽度和高度,为None时表示使用默认值
- [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- [59, 119], [116, 90], [156, 198], [373, 326]]。
- anchor_masks (list|tuple): 在计算YOLOv3损失时,使用anchor的mask索引,为None时表示使用默认值
- [[6, 7, 8], [3, 4, 5], [0, 1, 2]]。
- ignore_threshold (float): 在计算YOLOv3损失时,IoU大于`ignore_threshold`的预测框的置信度被忽略。默认为0.7。
- nms_score_threshold (float): 检测框的置信度得分阈值,置信度得分低于阈值的框应该被忽略。默认为0.01。
- nms_topk (int): 进行NMS时,根据置信度保留的最大检测框数。默认为1000。
- nms_keep_topk (int): 进行NMS后,每个图像要保留的总检测框数。默认为100。
- nms_iou_threshold (float): 进行NMS时,用于剔除检测框IOU的阈值。默认为0.45。
- label_smooth (bool): 是否使用label smooth。默认值为False。
- train_random_shapes (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。
- """
- def __init__(self,
- num_classes=80,
- backbone='MobileNetV1',
- anchors=None,
- anchor_masks=None,
- ignore_threshold=0.7,
- nms_score_threshold=0.01,
- nms_topk=1000,
- nms_keep_topk=100,
- nms_iou_threshold=0.45,
- label_smooth=False,
- train_random_shapes=[
- 320, 352, 384, 416, 448, 480, 512, 544, 576, 608
- ]):
- self.init_params = locals()
- super(YOLOv3, self).__init__('detector')
- backbones = [
- 'DarkNet53', 'ResNet34', 'MobileNetV1', 'MobileNetV3_large'
- ]
- assert backbone in backbones, "backbone should be one of {}".format(
- backbones)
- self.backbone = backbone
- self.num_classes = num_classes
- self.anchors = anchors
- self.anchor_masks = anchor_masks
- self.ignore_threshold = ignore_threshold
- self.nms_score_threshold = nms_score_threshold
- self.nms_topk = nms_topk
- self.nms_keep_topk = nms_keep_topk
- self.nms_iou_threshold = nms_iou_threshold
- self.label_smooth = label_smooth
- self.sync_bn = True
- self.train_random_shapes = train_random_shapes
- self.fixed_input_shape = None
- def _get_backbone(self, backbone_name):
- if backbone_name == 'DarkNet53':
- backbone = paddlex.cv.nets.DarkNet(norm_type='sync_bn')
- elif backbone_name == 'ResNet34':
- backbone = paddlex.cv.nets.ResNet(
- norm_type='sync_bn',
- layers=34,
- freeze_norm=False,
- norm_decay=0.,
- feature_maps=[3, 4, 5],
- freeze_at=0)
- elif backbone_name == 'MobileNetV1':
- backbone = paddlex.cv.nets.MobileNetV1(norm_type='sync_bn')
- elif backbone_name.startswith('MobileNetV3'):
- model_name = backbone_name.split('_')[1]
- backbone = paddlex.cv.nets.MobileNetV3(
- norm_type='sync_bn', model_name=model_name)
- return backbone
- def build_net(self, mode='train'):
- model = paddlex.cv.nets.detection.YOLOv3(
- backbone=self._get_backbone(self.backbone),
- num_classes=self.num_classes,
- mode=mode,
- anchors=self.anchors,
- anchor_masks=self.anchor_masks,
- ignore_threshold=self.ignore_threshold,
- label_smooth=self.label_smooth,
- nms_score_threshold=self.nms_score_threshold,
- nms_topk=self.nms_topk,
- nms_keep_topk=self.nms_keep_topk,
- nms_iou_threshold=self.nms_iou_threshold,
- train_random_shapes=self.train_random_shapes,
- fixed_input_shape=self.fixed_input_shape)
- inputs = model.generate_inputs()
- model_out = model.build_net(inputs)
- outputs = OrderedDict([('bbox', model_out)])
- if mode == 'train':
- self.optimizer.minimize(model_out)
- outputs = OrderedDict([('loss', model_out)])
- return inputs, outputs
- def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
- lr_decay_epochs, lr_decay_gamma,
- num_steps_each_epoch):
- if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
- raise Exception("warmup_steps should less than {}".format(
- lr_decay_epochs[0] * num_steps_each_epoch))
- boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
- values = [(lr_decay_gamma**i) * learning_rate
- for i in range(len(lr_decay_epochs) + 1)]
- lr_decay = fluid.layers.piecewise_decay(
- boundaries=boundaries, values=values)
- lr_warmup = fluid.layers.linear_lr_warmup(
- learning_rate=lr_decay,
- warmup_steps=warmup_steps,
- start_lr=warmup_start_lr,
- end_lr=learning_rate)
- optimizer = fluid.optimizer.Momentum(
- learning_rate=lr_warmup,
- momentum=0.9,
- regularization=fluid.regularizer.L2DecayRegularizer(5e-04))
- return optimizer
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=8,
- eval_dataset=None,
- save_interval_epochs=20,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=1.0 / 8000,
- warmup_steps=1000,
- warmup_start_lr=0.0,
- lr_decay_epochs=[213, 240],
- lr_decay_gamma=0.1,
- metric=None,
- use_vdl=False,
- sensitivities_file=None,
- eval_metric_loss=0.05,
- early_stop=False,
- early_stop_patience=5,
- resume_checkpoint=None):
- """训练。
- Args:
- num_epochs (int): 训练迭代轮数。
- train_dataset (paddlex.datasets): 训练数据读取器。
- train_batch_size (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡
- 数量之商为验证数据batch大小。默认值为8。
- eval_dataset (paddlex.datasets): 验证数据读取器。
- save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为20。
- log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为10。
- save_dir (str): 模型保存路径。默认值为'output'。
- pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
- 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
- optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
- fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
- learning_rate (float): 默认优化器的学习率。默认为1.0/8000。
- warmup_steps (int): 默认优化器进行warmup过程的步数。默认为1000。
- warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为0.0。
- lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[213, 240]。
- lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
- metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
- use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
- sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
- 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
- eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
- early_stop (bool): 是否使用提前终止训练策略。默认值为False。
- early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
- 连续下降或持平,则终止训练。默认值为5。
- resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
- Raises:
- ValueError: 评估类型不在指定列表中。
- ValueError: 模型从inference model进行加载。
- """
- if not self.trainable:
- raise ValueError("Model is not trainable from load_model method.")
- if metric is None:
- if isinstance(train_dataset, paddlex.datasets.CocoDetection):
- metric = 'COCO'
- elif isinstance(train_dataset, paddlex.datasets.VOCDetection) or \
- isinstance(train_dataset, paddlex.datasets.EasyDataDet):
- metric = 'VOC'
- else:
- raise ValueError(
- "train_dataset should be datasets.VOCDetection or datasets.COCODetection or datasets.EasyDataDet."
- )
- assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
- self.metric = metric
- self.labels = train_dataset.labels
- # 构建训练网络
- if optimizer is None:
- # 构建默认的优化策略
- num_steps_each_epoch = train_dataset.num_samples // train_batch_size
- optimizer = self.default_optimizer(
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- num_steps_each_epoch=num_steps_each_epoch)
- self.optimizer = optimizer
- # 构建训练、验证、预测网络
- self.build_program()
- # 初始化网络权重
- self.net_initialize(
- startup_prog=fluid.default_startup_program(),
- pretrain_weights=pretrain_weights,
- save_dir=save_dir,
- sensitivities_file=sensitivities_file,
- eval_metric_loss=eval_metric_loss,
- resume_checkpoint=resume_checkpoint)
- # 训练
- self.train_loop(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- use_vdl=use_vdl,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- def evaluate(self,
- eval_dataset,
- batch_size=1,
- epoch_id=None,
- metric=None,
- return_details=False):
- """评估。
- Args:
- eval_dataset (paddlex.datasets): 验证数据读取器。
- batch_size (int): 验证数据批大小。默认为1。
- epoch_id (int): 当前评估模型所在的训练轮数。
- metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
- 根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
- 如为COCODetection,则metric为'COCO'。
- return_details (bool): 是否返回详细信息。
- Returns:
- tuple (metrics, eval_details) | dict (metrics): 当return_details为True时,返回(metrics, eval_details),
- 当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,
- 分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。
- eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、
- 预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
- """
- self.arrange_transforms(
- transforms=eval_dataset.transforms, mode='eval')
- if metric is None:
- if hasattr(self, 'metric') and self.metric is not None:
- metric = self.metric
- else:
- if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
- metric = 'COCO'
- elif isinstance(eval_dataset, paddlex.datasets.VOCDetection):
- metric = 'VOC'
- else:
- raise Exception(
- "eval_dataset should be datasets.VOCDetection or datasets.COCODetection."
- )
- assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
- total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
- results = list()
- data_generator = eval_dataset.generator(
- batch_size=batch_size, drop_last=False)
- logging.info(
- "Start to evaluating(total_samples={}, total_steps={})...".format(
- eval_dataset.num_samples, total_steps))
- for step, data in tqdm.tqdm(
- enumerate(data_generator()), total=total_steps):
- images = np.array([d[0] for d in data])
- im_sizes = np.array([d[1] for d in data])
- feed_data = {'image': images, 'im_size': im_sizes}
- outputs = self.exe.run(
- self.test_prog,
- feed=[feed_data],
- fetch_list=list(self.test_outputs.values()),
- return_numpy=False)
- res = {
- 'bbox': (np.array(outputs[0]),
- outputs[0].recursive_sequence_lengths())
- }
- res_id = [np.array([d[2]]) for d in data]
- res['im_id'] = (res_id, [])
- if metric == 'VOC':
- res_gt_box = [d[3].reshape(-1, 4) for d in data]
- res_gt_label = [d[4].reshape(-1, 1) for d in data]
- res_is_difficult = [d[5].reshape(-1, 1) for d in data]
- res_id = [np.array([d[2]]) for d in data]
- res['gt_box'] = (res_gt_box, [])
- res['gt_label'] = (res_gt_label, [])
- res['is_difficult'] = (res_is_difficult, [])
- results.append(res)
- logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
- epoch_id, step + 1, total_steps))
- box_ap_stats, eval_details = eval_results(
- results, metric, eval_dataset.coco_gt, with_background=False)
- evaluate_metrics = OrderedDict(
- zip(['bbox_mmap' if metric == 'COCO' else 'bbox_map'],
- box_ap_stats))
- if return_details:
- return evaluate_metrics, eval_details
- return evaluate_metrics
- def predict(self, img_file, transforms=None):
- """预测。
- Args:
- img_file (str): 预测图像路径。
- transforms (paddlex.det.transforms): 数据预处理操作。
- Returns:
- list: 预测结果列表,每个预测结果由预测框类别标签、
- 预测框类别名称、预测框坐标、预测框得分组成。
- """
- if transforms is None and not hasattr(self, 'test_transforms'):
- raise Exception("transforms need to be defined, now is None.")
- if transforms is not None:
- self.arrange_transforms(transforms=transforms, mode='test')
- im, im_size = transforms(img_file)
- else:
- self.arrange_transforms(
- transforms=self.test_transforms, mode='test')
- im, im_size = self.test_transforms(img_file)
- im = np.expand_dims(im, axis=0)
- im_size = np.expand_dims(im_size, axis=0)
- outputs = self.exe.run(
- self.test_prog,
- feed={
- 'image': im,
- 'im_size': im_size
- },
- fetch_list=list(self.test_outputs.values()),
- return_numpy=False)
- res = {
- k: (np.array(v), v.recursive_sequence_lengths())
- for k, v in zip(list(self.test_outputs.keys()), outputs)
- }
- res['im_id'] = (np.array([[0]]).astype('int32'), [])
- clsid2catid = dict({i: i for i in range(self.num_classes)})
- xywh_results = bbox2out([res], clsid2catid)
- results = list()
- for xywh_res in xywh_results:
- del xywh_res['image_id']
- xywh_res['category'] = self.labels[xywh_res['category_id']]
- results.append(xywh_res)
- return results
|