pipeline.py 3.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.object_detection.result import DetResult
  18. from ...utils.hpi import HPIConfig
  19. from ...utils.pp_option import PaddlePredictorOption
  20. from ..base import BasePipeline
  21. @pipeline_requires_extra("cv")
  22. class SmallObjectDetectionPipeline(BasePipeline):
  23. """Small Object Detection Pipeline"""
  24. entities = "small_object_detection"
  25. def __init__(
  26. self,
  27. config: Dict,
  28. device: str = None,
  29. pp_option: PaddlePredictorOption = None,
  30. use_hpip: bool = False,
  31. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  32. ) -> None:
  33. """
  34. Initializes the class with given configurations and options.
  35. Args:
  36. config (Dict): Configuration dictionary containing model and other parameters.
  37. device (str): The device to run the prediction on. Default is None.
  38. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  39. use_hpip (bool, optional): Whether to use the high-performance
  40. inference plugin (HPIP) by default. Defaults to False.
  41. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  42. The default high-performance inference configuration dictionary.
  43. Defaults to None.
  44. """
  45. super().__init__(
  46. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  47. )
  48. small_object_detection_model_config = config["SubModules"][
  49. "SmallObjectDetection"
  50. ]
  51. self.small_object_detection_model = self.create_model(
  52. small_object_detection_model_config
  53. )
  54. self.threshold = small_object_detection_model_config["threshold"]
  55. def predict(
  56. self,
  57. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  58. threshold: Union[None, Dict[int, float], float] = None,
  59. **kwargs
  60. ) -> DetResult:
  61. """Predicts small object detection results for the given input.
  62. Args:
  63. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  64. threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  65. If None, it will use the default threshold specified during initialization.
  66. If a dictionary is provided, it should have integer keys corresponding to the class IDs and float values
  67. representing the respective thresholds for each class.
  68. If a single float value is provided, it will be used as the threshold for all classes.
  69. **kwargs: Additional keyword arguments that can be passed to the function.
  70. Returns:
  71. DetResult: The predicted small object detection results.
  72. """
  73. yield from self.small_object_detection_model(input, threshold=threshold)