trainer.py 3.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from pathlib import Path
  15. import lazy_paddle as paddle
  16. from ..base import BaseTrainer
  17. from ...utils.config import AttrDict
  18. from ...utils import logging
  19. from .model_list import MODELS
  20. class DetTrainer(BaseTrainer):
  21. """Object Detection Model Trainer"""
  22. entities = MODELS
  23. def _update_dataset(self):
  24. """update dataset settings"""
  25. self.pdx_config.update_dataset(self.global_config.dataset_dir, "COCODetDataset")
  26. def update_config(self):
  27. """update training config"""
  28. if self.train_config.log_interval:
  29. self.pdx_config.update_log_interval(self.train_config.log_interval)
  30. if self.train_config.eval_interval:
  31. self.pdx_config.update_eval_interval(self.train_config.eval_interval)
  32. self._update_dataset()
  33. if self.train_config.num_classes is not None:
  34. self.pdx_config.update_num_class(self.train_config.num_classes)
  35. if (
  36. self.train_config.pretrain_weight_path
  37. and self.train_config.pretrain_weight_path != ""
  38. ):
  39. self.pdx_config.update_pretrained_weights(
  40. self.train_config.pretrain_weight_path
  41. )
  42. if self.train_config.batch_size is not None:
  43. self.pdx_config.update_batch_size(self.train_config.batch_size)
  44. if self.train_config.learning_rate is not None:
  45. self.pdx_config.update_learning_rate(self.train_config.learning_rate)
  46. if self.train_config.epochs_iters is not None:
  47. self.pdx_config.update_epochs(self.train_config.epochs_iters)
  48. epochs_iters = self.train_config.epochs_iters
  49. else:
  50. epochs_iters = self.pdx_config.get_epochs_iters()
  51. if self.global_config.output is not None:
  52. self.pdx_config.update_save_dir(self.global_config.output)
  53. if "PicoDet" in self.global_config.model:
  54. assigner_epochs = max(int(epochs_iters / 10), 1)
  55. try:
  56. self.pdx_config.update_static_assigner_epochs(assigner_epochs)
  57. except Exception:
  58. logging.info(
  59. f"The model({self.global_config.model}) don't support to update_static_assigner_epochs!"
  60. )
  61. def get_train_kwargs(self) -> dict:
  62. """get key-value arguments of model training function
  63. Returns:
  64. dict: the arguments of training function.
  65. """
  66. train_args = {"device": self.get_device()}
  67. if (
  68. self.train_config.resume_path is not None
  69. and self.train_config.resume_path != ""
  70. ):
  71. train_args["resume_path"] = self.train_config.resume_path
  72. train_args["dy2st"] = self.train_config.get("dy2st", False)
  73. return train_args