| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- from paddleslim import L1NormFilterPruner
- from . import cv
- from paddlex.cv.transforms import cls_transforms
- import paddlex.utils.logging as logging
- transforms = cls_transforms
- class ResNet18(cv.models.ResNet18):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ResNet18, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class ResNet34(cv.models.ResNet34):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ResNet34, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class ResNet50(cv.models.ResNet50):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ResNet50, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class ResNet101(cv.models.ResNet101):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ResNet101, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class ResNet50_vd(cv.models.ResNet50_vd):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ResNet50_vd, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class ResNet101_vd(cv.models.ResNet101_vd):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ResNet101_vd, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class ResNet50_vd_ssld(cv.models.ResNet50_vd_ssld):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ResNet50_vd_ssld, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class ResNet101_vd_ssld(cv.models.ResNet101_vd_ssld):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ResNet101_vd_ssld, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class DarkNet53(cv.models.DarkNet53):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(DarkNet53, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class MobileNetV1(cv.models.MobileNetV1):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(MobileNetV1, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class MobileNetV2(cv.models.MobileNetV2):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(MobileNetV2, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class MobileNetV3_small(cv.models.MobileNetV3_small):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(MobileNetV3_small, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class MobileNetV3_large(cv.models.MobileNetV3_large):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(MobileNetV3_large, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class MobileNetV3_small_ssld(cv.models.MobileNetV3_small_ssld):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(MobileNetV3_small_ssld, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class MobileNetV3_large_ssld(cv.models.MobileNetV3_large_ssld):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(MobileNetV3_large_ssld, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class Xception41(cv.models.Xception41):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(Xception41, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class Xception65(cv.models.Xception65):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(Xception65, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class DenseNet121(cv.models.DenseNet121):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(DenseNet121, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class DenseNet161(cv.models.DenseNet161):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(DenseNet161, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class DenseNet201(cv.models.DenseNet201):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(DenseNet201, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class ShuffleNetV2(cv.models.ShuffleNetV2):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(ShuffleNetV2, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class HRNet_W18(cv.models.HRNet_W18_C):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(HRNet_W18, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- class AlexNet(cv.models.AlexNet):
- def __init__(self, num_classes=1000, input_channel=None):
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(AlexNet, self).__init__(num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- pruned_flops=.2,
- early_stop=False,
- early_stop_patience=5):
- _legacy_train(
- self,
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- use_vdl=use_vdl,
- sensitivities_file=sensitivities_file,
- pruned_flops=pruned_flops,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- def _legacy_train(model, num_epochs, train_dataset, train_batch_size,
- eval_dataset, save_interval_epochs, log_interval_steps,
- save_dir, pretrain_weights, optimizer, learning_rate,
- warmup_steps, warmup_start_lr, lr_decay_epochs,
- lr_decay_gamma, use_vdl, sensitivities_file, pruned_flops,
- early_stop, early_stop_patience):
- model.labels = train_dataset.labels
- # initiate weights
- if pretrain_weights is not None and not osp.exists(pretrain_weights):
- if pretrain_weights not in ['IMAGENET']:
- logging.warning("Path of pretrain_weights('{}') does not exist!".
- format(pretrain_weights))
- logging.warning("Pretrain_weights is forcibly set to 'IMAGENET'. "
- "If don't want to use pretrain weights, "
- "set pretrain_weights to be None.")
- pretrain_weights = 'IMAGENET'
- pretrained_dir = osp.join(save_dir, 'pretrain')
- model.net_initialize(
- pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
- if sensitivities_file is not None:
- dataset = eval_dataset or train_dataset
- inputs = [1, 3] + list(dataset[0]['image'].shape[:2])
- model.pruner = L1NormFilterPruner(
- model.net, inputs=inputs, sen_file=sensitivities_file)
- model.pruner.sensitive_prune(pruned_flops=pruned_flops)
- # build optimizer if not defined
- if optimizer is None:
- num_steps_each_epoch = len(train_dataset) // train_batch_size
- model.optimizer = model.default_optimizer(
- parameters=model.net.parameters(),
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- num_steps_each_epoch=num_steps_each_epoch)
- else:
- model.optimizer = optimizer
- model.train_loop(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience,
- use_vdl=use_vdl)
|