| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ....modules.formula_recognition.model_list import MODELS
- from ....utils import logging
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ..base import BasePredictor
- from .processors import (
- LatexImageFormat,
- LaTeXOCRDecode,
- LatexTestTransform,
- MinMaxResize,
- NormalizeImage,
- ToBatch,
- UniMERNetDecode,
- UniMERNetImageFormat,
- UniMERNetImgDecode,
- UniMERNetTestTransform,
- )
- from .result import FormulaRecResult
- class FormulaRecPredictor(BasePredictor):
- """FormulaRecPredictor that inherits from BasePredictor."""
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(self, *args, **kwargs):
- """Initializes FormulaRecPredictor.
- Args:
- *args: Arbitrary positional arguments passed to the superclass.
- **kwargs: Arbitrary keyword arguments passed to the superclass.
- """
- super().__init__(*args, **kwargs)
- self.model_names_only_supports_batchsize_of_one = {
- "LaTeX_OCR_rec",
- }
- if self.model_name in self.model_names_only_supports_batchsize_of_one:
- logging.warning(
- f"Formula Recognition Models: \"{', '.join(list(self.model_names_only_supports_batchsize_of_one))}\" only supports prediction with a batch_size of one, "
- "if you set the predictor with a batch_size larger than one, no error will occur, however, it will actually inference with a batch_size of one, "
- f"which will lead to a slower inference speed. You are now using {self.config['Global']['model_name']}."
- )
- self.pre_tfs, self.infer, self.post_op = self._build()
- def _build_batch_sampler(self):
- return ImageBatchSampler()
- def _get_result_class(self):
- return FormulaRecResult
- def _build(self):
- pre_tfs = {"Read": ReadImage(format="RGB")}
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- assert tf_key in self._FUNC_MAP
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- name, op = func(self, **args) if args else func(self)
- if op:
- pre_tfs[name] = op
- pre_tfs["ToBatch"] = ToBatch()
- infer = self.create_static_infer()
- post_op = self.build_postprocess(**self.config["PostProcess"])
- return pre_tfs, infer, post_op
- def process(self, batch_data):
- batch_raw_imgs = self.pre_tfs["Read"](imgs=batch_data.instances)
- if self.model_name in ("LaTeX_OCR_rec"):
- batch_imgs = self.pre_tfs["MinMaxResize"](imgs=batch_raw_imgs)
- batch_imgs = self.pre_tfs["LatexTestTransform"](imgs=batch_imgs)
- batch_imgs = self.pre_tfs["NormalizeImage"](imgs=batch_imgs)
- batch_imgs = self.pre_tfs["LatexImageFormat"](imgs=batch_imgs)
- elif self.model_name in ("UniMERNet"):
- batch_imgs = self.pre_tfs["UniMERNetImgDecode"](imgs=batch_raw_imgs)
- batch_imgs = self.pre_tfs["UniMERNetTestTransform"](imgs=batch_imgs)
- batch_imgs = self.pre_tfs["UniMERNetImageFormat"](imgs=batch_imgs)
- elif self.model_name in (
- "PP-FormulaNet-S",
- "PP-FormulaNet-L",
- "PP-FormulaNet_plus-S",
- "PP-FormulaNet_plus-M",
- "PP-FormulaNet_plus-L",
- ):
- batch_imgs = self.pre_tfs["UniMERNetImgDecode"](imgs=batch_raw_imgs)
- batch_imgs = self.pre_tfs["UniMERNetTestTransform"](imgs=batch_imgs)
- batch_imgs = self.pre_tfs["LatexImageFormat"](imgs=batch_imgs)
- if self.model_name in self.model_names_only_supports_batchsize_of_one:
- batch_preds = []
- max_length = 0
- for batch_img in batch_imgs:
- batch_pred_ = self.infer([batch_img])[0].reshape([-1])
- max_length = max(max_length, batch_pred_.shape[0])
- batch_preds.append(batch_pred_)
- for i in range(len(batch_preds)):
- batch_preds[i] = np.pad(
- batch_preds[i],
- (0, max_length - batch_preds[i].shape[0]),
- mode="constant",
- constant_values=0,
- )
- else:
- x = self.pre_tfs["ToBatch"](imgs=batch_imgs)
- batch_preds = self.infer(x=x)
- batch_preds = [p.reshape([-1]) for p in batch_preds[0]]
- rec_formula = self.post_op(batch_preds)
- return {
- "input_path": batch_data.input_paths,
- "page_index": batch_data.page_indexes,
- "input_img": batch_raw_imgs,
- "rec_formula": rec_formula,
- }
- @register("DecodeImage")
- def build_readimg(self, channel_first, img_mode="RGB"):
- assert channel_first == False
- return "Read", ReadImage(format=img_mode)
- @register("MinMaxResize")
- def build_min_max_resize(self, min_dimensions, max_dimensions):
- return "MinMaxResize", MinMaxResize(
- min_dimensions=min_dimensions, max_dimensions=max_dimensions
- )
- @register("LatexTestTransform")
- def build_latex_test_transform(
- self,
- ):
- return "LatexTestTransform", LatexTestTransform()
- @register("NormalizeImage")
- def build_normalize(self, mean, std, order="chw"):
- return "NormalizeImage", NormalizeImage(mean=mean, std=std, order=order)
- @register("LatexImageFormat")
- def build_latexocr_imageformat(self):
- return "LatexImageFormat", LatexImageFormat()
- @register("UniMERNetImgDecode")
- def build_unimernet_decode(self, input_size):
- return "UniMERNetImgDecode", UniMERNetImgDecode(input_size)
- def build_postprocess(self, **kwargs):
- if kwargs.get("name") == "LaTeXOCRDecode":
- return LaTeXOCRDecode(
- character_list=kwargs.get("character_dict"),
- )
- elif kwargs.get("name") == "UniMERNetDecode":
- return UniMERNetDecode(
- character_list=kwargs.get("character_dict"),
- )
- else:
- raise Exception()
- @register("UniMERNetTestTransform")
- def build_unimernet_imageformat(self):
- return "UniMERNetTestTransform", UniMERNetTestTransform()
- @register("UniMERNetImageFormat")
- def build_unimernet_imageformat(self):
- return "UniMERNetImageFormat", UniMERNetImageFormat()
- @register("UniMERNetLabelEncode")
- def foo(self, *args, **kwargs):
- return None, None
- @register("KeepKeys")
- def foo(self, *args, **kwargs):
- return None, None
|