| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import inspect
- from typing import Any, Callable, Dict, List, Optional, Union
- from ....modules.open_vocabulary_detection.model_list import MODELS
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ..base import BasePredictor
- from ..object_detection.result import DetResult
- from .processors import (
- GroundingDINOPostProcessor,
- GroundingDINOProcessor,
- YOLOWorldPostProcessor,
- YOLOWorldProcessor,
- )
- class OVDetPredictor(BasePredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(
- self, *args, thresholds: Optional[Union[Dict, float]] = None, **kwargs
- ):
- """Initializes DetPredictor.
- Args:
- *args: Arbitrary positional arguments passed to the superclass.
- thresholds (Optional[Union[Dict, float]], optional): The thresholds for filtering out low-confidence predictions, using a dict to record multiple thresholds
- Defaults to None.
- **kwargs: Arbitrary keyword arguments passed to the superclass.
- """
- super().__init__(*args, **kwargs)
- if isinstance(thresholds, float):
- thresholds = {"threshold": thresholds}
- self.thresholds = thresholds
- self.pre_ops, self.infer, self.post_op = self._build()
- def _build_batch_sampler(self):
- return ImageBatchSampler()
- def _get_result_class(self):
- return DetResult
- def _build(self):
- # build model preprocess ops
- pre_ops = [ReadImage(format="RGB")]
- for cfg in self.config["Preprocess"]:
- tf_key = cfg["type"]
- func = self._FUNC_MAP[tf_key]
- cfg.pop("type")
- args = cfg
- op = func(self, **args) if args else func(self)
- if op:
- pre_ops.append(op)
- # build infer
- infer = self.create_static_infer()
- # build postprocess op
- post_op = self.build_postprocess(pre_ops=pre_ops)
- return pre_ops, infer, post_op
- def process(
- self, batch_data: List[Any], prompt: str, thresholds: Optional[dict] = None
- ):
- """
- Process a batch of data through the preprocessing, inference, and postprocessing.
- Args:
- batch_data (List[str]): A batch of input data (e.g., image file paths).
- prompt (str): Text prompt for open vocabulary detection.
- thresholds (Optional[dict]): thresholds used for postprocess.
- Returns:
- dict: A dictionary containing the input path, raw image, class IDs, scores, and label names
- for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
- """
- image_paths = batch_data.input_paths
- src_images = self.pre_ops[0](batch_data.instances)
- datas = src_images
- # preprocess for image only
- for pre_op in self.pre_ops[1:-1]:
- datas = pre_op(datas)
- # use Model-specific preprocessor to format batch inputs
- batch_inputs = self.pre_ops[-1](datas, prompt)
- # do infer
- batch_preds = self.infer(batch_inputs)
- # postprocess
- current_thresholds = self._parse_current_thresholds(
- self.post_op, self.thresholds, thresholds
- )
- boxes = self.post_op(
- *batch_preds, prompt=prompt, src_images=src_images, **current_thresholds
- )
- return {
- "input_path": image_paths,
- "input_img": [img[..., ::-1] for img in src_images],
- "boxes": boxes,
- }
- def _parse_current_thresholds(self, func, init_thresholds, process_thresholds):
- assert isinstance(func, Callable)
- thr2val = {}
- for name, param in inspect.signature(func).parameters.items():
- if "threshold" in name:
- thr2val[name] = None
- if init_thresholds is not None:
- thr2val.update(init_thresholds)
- if process_thresholds is not None:
- thr2val.update(process_thresholds)
- return thr2val
- def build_postprocess(self, **kwargs):
- if "GroundingDINO" in self.model_name:
- pre_ops = kwargs.get("pre_ops")
- return GroundingDINOPostProcessor(
- tokenizer=pre_ops[-1].tokenizer,
- box_threshold=self.config["box_threshold"],
- text_threshold=self.config["text_threshold"],
- )
- elif "YOLO-World" in self.model_name:
- return YOLOWorldPostProcessor(
- threshold=self.config["threshold"],
- )
- else:
- raise NotImplementedError
- @register("GroundingDINOProcessor")
- def build_grounding_dino_preprocessor(
- self, text_max_words=256, target_size=(800, 1333)
- ):
- return GroundingDINOProcessor(
- model_dir=self.model_dir,
- text_max_words=text_max_words,
- target_size=target_size,
- )
- @register("YOLOWorldProcessor")
- def build_yoloworld_preprocessor(
- self,
- image_target_size=(640, 640),
- image_mean=[0.0, 0.0, 0.0],
- image_std=[1.0, 1.0, 1.0],
- ):
- return YOLOWorldProcessor(
- model_dir=self.model_dir,
- image_target_size=image_target_size,
- image_mean=image_mean,
- image_std=image_std,
- )
|