ops.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import cv2
  15. import math
  16. import numpy as np
  17. from PIL import Image, ImageEnhance
  18. def normalize(im, mean, std, min_value=[0, 0, 0], max_value=[255, 255, 255]):
  19. # Rescaling (min-max normalization)
  20. range_value = [max_value[i] - min_value[i] for i in range(len(max_value))]
  21. im = (im - min_value) / range_value
  22. # Standardization (Z-score Normalization)
  23. im -= mean
  24. im /= std
  25. return im.astype('float32')
  26. def permute(im, to_bgr=False):
  27. im = np.swapaxes(im, 1, 2)
  28. im = np.swapaxes(im, 1, 0)
  29. if to_bgr:
  30. im = im[[2, 1, 0], :, :]
  31. return im
  32. def resize_long(im, long_size=224, interpolation=cv2.INTER_LINEAR):
  33. value = max(im.shape[0], im.shape[1])
  34. scale = float(long_size) / float(value)
  35. resized_width = int(round(im.shape[1] * scale))
  36. resized_height = int(round(im.shape[0] * scale))
  37. im_dims = im.ndim
  38. im = cv2.resize(
  39. im, (resized_width, resized_height), interpolation=interpolation)
  40. if im_dims >= 3 and im.ndim < 3:
  41. im = np.expand_dims(im, axis=-1)
  42. return im
  43. def resize(im, target_size=608, interp=cv2.INTER_LINEAR):
  44. if isinstance(target_size, list) or isinstance(target_size, tuple):
  45. w = target_size[0]
  46. h = target_size[1]
  47. else:
  48. w = target_size
  49. h = target_size
  50. im = cv2.resize(im, (w, h), interpolation=interp)
  51. if im.ndim < 3:
  52. im = np.expand_dims(im, axis=-1)
  53. return im
  54. def random_crop(im,
  55. crop_size=224,
  56. lower_scale=0.08,
  57. lower_ratio=3. / 4,
  58. upper_ratio=4. / 3):
  59. scale = [lower_scale, 1.0]
  60. ratio = [lower_ratio, upper_ratio]
  61. aspect_ratio = math.sqrt(np.random.uniform(*ratio))
  62. w = 1. * aspect_ratio
  63. h = 1. / aspect_ratio
  64. bound = min((float(im.shape[0]) / im.shape[1]) / (h**2),
  65. (float(im.shape[1]) / im.shape[0]) / (w**2))
  66. scale_max = min(scale[1], bound)
  67. scale_min = min(scale[0], bound)
  68. target_area = im.shape[0] * im.shape[1] * np.random.uniform(scale_min,
  69. scale_max)
  70. target_size = math.sqrt(target_area)
  71. w = int(target_size * w)
  72. h = int(target_size * h)
  73. i = np.random.randint(0, im.shape[0] - h + 1)
  74. j = np.random.randint(0, im.shape[1] - w + 1)
  75. im = im[i:i + h, j:j + w, :]
  76. im = cv2.resize(im, (crop_size, crop_size))
  77. return im
  78. def center_crop(im, crop_size=224):
  79. height, width = im.shape[:2]
  80. w_start = (width - crop_size) // 2
  81. h_start = (height - crop_size) // 2
  82. w_end = w_start + crop_size
  83. h_end = h_start + crop_size
  84. im = im[h_start:h_end, w_start:w_end, :]
  85. return im
  86. def horizontal_flip(im):
  87. if len(im.shape) == 3:
  88. im = im[:, ::-1, :]
  89. elif len(im.shape) == 2:
  90. im = im[:, ::-1]
  91. return im
  92. def vertical_flip(im):
  93. if len(im.shape) == 3:
  94. im = im[::-1, :, :]
  95. elif len(im.shape) == 2:
  96. im = im[::-1, :]
  97. return im
  98. def bgr2rgb(im):
  99. return im[:, :, ::-1]
  100. def rgb2bgr(im):
  101. return im[:, :, ::-1]
  102. def hue(im, hue_lower, hue_upper, is_rgb=False):
  103. if not is_rgb:
  104. im = bgr2rgb(im)
  105. delta = np.random.uniform(hue_lower, hue_upper)
  106. u = np.cos(delta * np.pi)
  107. w = np.sin(delta * np.pi)
  108. bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
  109. tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
  110. [0.211, -0.523, 0.311]])
  111. ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
  112. [1.0, -1.107, 1.705]])
  113. t = np.dot(np.dot(ityiq, bt), tyiq).T
  114. im = np.dot(im, t)
  115. if not is_rgb:
  116. im = rgb2bgr(im)
  117. return im
  118. def saturation(im, saturation_lower, saturation_upper, is_rgb=False):
  119. if is_rgb:
  120. gray_scale = np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
  121. else:
  122. gray_scale = np.array([[[0.114, 0.587, 0.299]]], dtype=np.float32)
  123. delta = np.random.uniform(saturation_lower, saturation_upper)
  124. gray = im * gray_scale
  125. gray = gray.sum(axis=2, keepdims=True)
  126. gray *= (1.0 - delta)
  127. im *= delta
  128. im += gray
  129. return im
  130. def contrast(im, contrast_lower, contrast_upper):
  131. delta = np.random.uniform(contrast_lower, contrast_upper)
  132. im_mean = im.mean()
  133. im1 = np.full_like(im, im_mean)
  134. im *= delta
  135. im += im1 * (1 - delta)
  136. return im
  137. def brightness(im, brightness_lower, brightness_upper):
  138. delta = np.random.uniform(brightness_lower, brightness_upper)
  139. im *= delta
  140. return im
  141. def rotate(im, rotate_lower, rotate_upper):
  142. rotate_delta = np.random.uniform(rotate_lower, rotate_upper)
  143. im = im.rotate(int(rotate_delta))
  144. return im
  145. def resize_padding(im, max_side_len=2400):
  146. '''
  147. resize image to a size multiple of 32 which is required by the network
  148. :param im: the resized image
  149. :param max_side_len: limit of max image size to avoid out of memory in gpu
  150. :return: the resized image and the resize ratio
  151. '''
  152. h, w, _ = im.shape
  153. resize_w = w
  154. resize_h = h
  155. # limit the max side
  156. if max(resize_h, resize_w) > max_side_len:
  157. ratio = float(
  158. max_side_len) / resize_h if resize_h > resize_w else float(
  159. max_side_len) / resize_w
  160. else:
  161. ratio = 1.
  162. resize_h = int(resize_h * ratio)
  163. resize_w = int(resize_w * ratio)
  164. resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
  165. resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
  166. resize_h = max(32, resize_h)
  167. resize_w = max(32, resize_w)
  168. im = cv2.resize(im, (int(resize_w), int(resize_h)))
  169. #im = cv2.resize(im, (512, 512))
  170. ratio_h = resize_h / float(h)
  171. ratio_w = resize_w / float(w)
  172. _ratio = np.array([ratio_h, ratio_w]).reshape(-1, 2)
  173. return im, _ratio