| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- import paddlex as pdx
- from paddlex import transforms as T
- # 下载和解压小度熊分拣数据集
- dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
- pdx.utils.download_and_decompress(dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
- train_transforms = T.Compose([
- T.RandomResizeByShort(
- short_sizes=[640, 672, 704, 736, 768, 800],
- max_size=1333,
- interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- eval_transforms = T.Compose([
- T.ResizeByShort(
- short_size=800, max_size=1333, interp='CUBIC'), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/paddlex/cv/datasets/coco.py#L26
- train_dataset = pdx.datasets.CocoDetection(
- data_dir='xiaoduxiong_ins_det/JPEGImages',
- ann_file='xiaoduxiong_ins_det/train.json',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.CocoDetection(
- data_dir='xiaoduxiong_ins_det/JPEGImages',
- ann_file='xiaoduxiong_ins_det/val.json',
- transforms=eval_transforms)
- # 加载模型
- model = pdx.load_model('output/mask_rcnn_r50_fpn/best_model')
- # 在线量化
- model.quant_aware_train(
- num_epochs=6,
- train_dataset=train_dataset,
- train_batch_size=1,
- eval_dataset=eval_dataset,
- learning_rate=0.000125,
- save_dir='output/mask_rcnn_r50_fpn/quant',
- use_vdl=True)
|