hrnet.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. # coding: utf8
  2. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. from __future__ import absolute_import
  16. from __future__ import division
  17. from __future__ import print_function
  18. from collections import OrderedDict
  19. import paddle.fluid as fluid
  20. from paddle.fluid.initializer import MSRA
  21. from paddle.fluid.param_attr import ParamAttr
  22. from .model_utils.libs import sigmoid_to_softmax
  23. from .model_utils.loss import softmax_with_loss
  24. from .model_utils.loss import dice_loss
  25. from .model_utils.loss import bce_loss
  26. import paddlex
  27. class HRNet(object):
  28. def __init__(self,
  29. num_classes,
  30. mode='train',
  31. width=18,
  32. use_bce_loss=False,
  33. use_dice_loss=False,
  34. class_weight=None,
  35. ignore_index=255,
  36. fixed_input_shape=None):
  37. # dice_loss或bce_loss只适用两类分割中
  38. if num_classes > 2 and (use_bce_loss or use_dice_loss):
  39. raise ValueError(
  40. "dice loss and bce loss is only applicable to binary classfication"
  41. )
  42. if class_weight is not None:
  43. if isinstance(class_weight, list):
  44. if len(class_weight) != num_classes:
  45. raise ValueError(
  46. "Length of class_weight should be equal to number of classes"
  47. )
  48. elif isinstance(class_weight, str):
  49. if class_weight.lower() != 'dynamic':
  50. raise ValueError(
  51. "if class_weight is string, must be dynamic!")
  52. else:
  53. raise TypeError(
  54. 'Expect class_weight is a list or string but receive {}'.
  55. format(type(class_weight)))
  56. self.num_classes = num_classes
  57. self.mode = mode
  58. self.use_bce_loss = use_bce_loss
  59. self.use_dice_loss = use_dice_loss
  60. self.class_weight = class_weight
  61. self.ignore_index = ignore_index
  62. self.fixed_input_shape = fixed_input_shape
  63. self.backbone = paddlex.cv.nets.hrnet.HRNet(
  64. width=width, feature_maps="stage4")
  65. def build_net(self, inputs):
  66. if self.use_dice_loss or self.use_bce_loss:
  67. self.num_classes = 1
  68. image = inputs['image']
  69. st4 = self.backbone(image)
  70. # upsample
  71. shape = fluid.layers.shape(st4[0])[-2:]
  72. st4[1] = fluid.layers.resize_bilinear(
  73. st4[1], out_shape=shape, align_corners=False, align_mode=1)
  74. st4[2] = fluid.layers.resize_bilinear(
  75. st4[2], out_shape=shape, align_corners=False, align_mode=1)
  76. st4[3] = fluid.layers.resize_bilinear(
  77. st4[3], out_shape=shape, align_corners=False, align_mode=1)
  78. out = fluid.layers.concat(st4, axis=1)
  79. last_channels = sum(self.backbone.channels[str(self.backbone.width)][
  80. -1])
  81. out = self._conv_bn_layer(
  82. input=out,
  83. filter_size=1,
  84. num_filters=last_channels,
  85. stride=1,
  86. if_act=True,
  87. name='conv-2')
  88. out = fluid.layers.conv2d(
  89. input=out,
  90. num_filters=self.num_classes,
  91. filter_size=1,
  92. stride=1,
  93. padding=0,
  94. act=None,
  95. param_attr=ParamAttr(
  96. initializer=MSRA(), name='conv-1_weights'),
  97. bias_attr=False)
  98. input_shape = fluid.layers.shape(image)[-2:]
  99. logit = fluid.layers.resize_bilinear(
  100. out, input_shape, align_corners=False, align_mode=1)
  101. if self.num_classes == 1:
  102. out = sigmoid_to_softmax(logit)
  103. out = fluid.layers.transpose(out, [0, 2, 3, 1])
  104. else:
  105. out = fluid.layers.transpose(logit, [0, 2, 3, 1])
  106. pred = fluid.layers.argmax(out, axis=3)
  107. pred = fluid.layers.unsqueeze(pred, axes=[3])
  108. if self.mode == 'train':
  109. label = inputs['label']
  110. mask = label != self.ignore_index
  111. return self._get_loss(logit, label, mask)
  112. elif self.mode == 'eval':
  113. label = inputs['label']
  114. mask = label != self.ignore_index
  115. loss = self._get_loss(logit, label, mask)
  116. return loss, pred, label, mask
  117. else:
  118. if self.num_classes == 1:
  119. logit = sigmoid_to_softmax(logit)
  120. else:
  121. logit = fluid.layers.softmax(logit, axis=1)
  122. return pred, logit
  123. def generate_inputs(self):
  124. inputs = OrderedDict()
  125. if self.fixed_input_shape is not None:
  126. input_shape = [
  127. None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
  128. ]
  129. inputs['image'] = fluid.data(
  130. dtype='float32', shape=input_shape, name='image')
  131. else:
  132. inputs['image'] = fluid.data(
  133. dtype='float32', shape=[None, 3, None, None], name='image')
  134. if self.mode == 'train':
  135. inputs['label'] = fluid.data(
  136. dtype='int32', shape=[None, 1, None, None], name='label')
  137. elif self.mode == 'eval':
  138. inputs['label'] = fluid.data(
  139. dtype='int32', shape=[None, 1, None, None], name='label')
  140. return inputs
  141. def _get_loss(self, logit, label, mask):
  142. avg_loss = 0
  143. if not (self.use_dice_loss or self.use_bce_loss):
  144. avg_loss += softmax_with_loss(
  145. logit,
  146. label,
  147. mask,
  148. num_classes=self.num_classes,
  149. weight=self.class_weight,
  150. ignore_index=self.ignore_index)
  151. else:
  152. if self.use_dice_loss:
  153. avg_loss += dice_loss(logit, label, mask)
  154. if self.use_bce_loss:
  155. avg_loss += bce_loss(
  156. logit, label, mask, ignore_index=self.ignore_index)
  157. return avg_loss
  158. def _conv_bn_layer(self,
  159. input,
  160. filter_size,
  161. num_filters,
  162. stride=1,
  163. padding=1,
  164. num_groups=1,
  165. if_act=True,
  166. name=None):
  167. conv = fluid.layers.conv2d(
  168. input=input,
  169. num_filters=num_filters,
  170. filter_size=filter_size,
  171. stride=stride,
  172. padding=(filter_size - 1) // 2,
  173. groups=num_groups,
  174. act=None,
  175. param_attr=ParamAttr(
  176. initializer=MSRA(), name=name + '_weights'),
  177. bias_attr=False)
  178. bn_name = name + '_bn'
  179. bn = fluid.layers.batch_norm(
  180. input=conv,
  181. param_attr=ParamAttr(
  182. name=bn_name + "_scale",
  183. initializer=fluid.initializer.Constant(1.0)),
  184. bias_attr=ParamAttr(
  185. name=bn_name + "_offset",
  186. initializer=fluid.initializer.Constant(0.0)),
  187. moving_mean_name=bn_name + '_mean',
  188. moving_variance_name=bn_name + '_variance')
  189. if if_act:
  190. bn = fluid.layers.relu(bn)
  191. return bn