classifier.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. #Licensed under the Apache License, Version 2.0 (the "License");
  4. #you may not use this file except in compliance with the License.
  5. #You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. #Unless required by applicable law or agreed to in writing, software
  10. #distributed under the License is distributed on an "AS IS" BASIS,
  11. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. #See the License for the specific language governing permissions and
  13. #limitations under the License.
  14. from __future__ import absolute_import
  15. import numpy as np
  16. import time
  17. import math
  18. import tqdm
  19. import paddle.fluid as fluid
  20. import paddlex.utils.logging as logging
  21. from paddlex.utils import seconds_to_hms
  22. import paddlex
  23. from collections import OrderedDict
  24. from .base import BaseAPI
  25. class BaseClassifier(BaseAPI):
  26. """构建分类器,并实现其训练、评估、预测和模型导出。
  27. Args:
  28. model_name (str): 分类器的模型名字,取值范围为['ResNet18',
  29. 'ResNet34', 'ResNet50', 'ResNet101',
  30. 'ResNet50_vd', 'ResNet101_vd', 'DarkNet53',
  31. 'MobileNetV1', 'MobileNetV2', 'Xception41',
  32. 'Xception65', 'Xception71']。默认为'ResNet50'。
  33. num_classes (int): 类别数。默认为1000。
  34. """
  35. def __init__(self, model_name='ResNet50', num_classes=1000):
  36. self.init_params = locals()
  37. super(BaseClassifier, self).__init__('classifier')
  38. if not hasattr(paddlex.cv.nets, str.lower(model_name)):
  39. raise Exception(
  40. "ERROR: There's no model named {}.".format(model_name))
  41. self.model_name = model_name
  42. self.labels = None
  43. self.num_classes = num_classes
  44. def build_net(self, mode='train'):
  45. image = fluid.data(
  46. dtype='float32', shape=[None, 3, None, None], name='image')
  47. if mode != 'test':
  48. label = fluid.data(dtype='int64', shape=[None, 1], name='label')
  49. model = getattr(paddlex.cv.nets, str.lower(self.model_name))
  50. net_out = model(image, num_classes=self.num_classes)
  51. softmax_out = fluid.layers.softmax(net_out, use_cudnn=False)
  52. inputs = OrderedDict([('image', image)])
  53. outputs = OrderedDict([('predict', softmax_out)])
  54. if mode != 'test':
  55. cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
  56. avg_cost = fluid.layers.mean(cost)
  57. acc1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
  58. k = min(5, self.num_classes)
  59. acck = fluid.layers.accuracy(input=softmax_out, label=label, k=k)
  60. if mode == 'train':
  61. self.optimizer.minimize(avg_cost)
  62. inputs = OrderedDict([('image', image), ('label', label)])
  63. outputs = OrderedDict([('loss', avg_cost), ('acc1', acc1),
  64. ('acc{}'.format(k), acck)])
  65. if mode == 'eval':
  66. del outputs['loss']
  67. return inputs, outputs
  68. def default_optimizer(self, learning_rate, lr_decay_epochs, lr_decay_gamma,
  69. num_steps_each_epoch):
  70. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  71. values = [
  72. learning_rate * (lr_decay_gamma**i)
  73. for i in range(len(lr_decay_epochs) + 1)
  74. ]
  75. lr_decay = fluid.layers.piecewise_decay(
  76. boundaries=boundaries, values=values)
  77. optimizer = fluid.optimizer.Momentum(
  78. lr_decay,
  79. momentum=0.9,
  80. regularization=fluid.regularizer.L2Decay(1e-04))
  81. return optimizer
  82. def train(self,
  83. num_epochs,
  84. train_dataset,
  85. train_batch_size=64,
  86. eval_dataset=None,
  87. save_interval_epochs=1,
  88. log_interval_steps=2,
  89. save_dir='output',
  90. pretrain_weights='IMAGENET',
  91. optimizer=None,
  92. learning_rate=0.025,
  93. lr_decay_epochs=[30, 60, 90],
  94. lr_decay_gamma=0.1,
  95. use_vdl=False,
  96. sensitivities_file=None,
  97. eval_metric_loss=0.05):
  98. """训练。
  99. Args:
  100. num_epochs (int): 训练迭代轮数。
  101. train_dataset (paddlex.datasets): 训练数据读取器。
  102. train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
  103. eval_dataset (paddlex.datasets: 验证数据读取器。
  104. save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
  105. log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
  106. save_dir (str): 模型保存路径。
  107. pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
  108. 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
  109. optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
  110. fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
  111. learning_rate (float): 默认优化器的初始学习率。默认为0.025。
  112. lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
  113. lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
  114. use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
  115. sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
  116. 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
  117. eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
  118. Raises:
  119. ValueError: 模型从inference model进行加载。
  120. """
  121. if not self.trainable:
  122. raise ValueError(
  123. "Model is not trainable since it was loaded from a inference model."
  124. )
  125. self.labels = train_dataset.labels
  126. if optimizer is None:
  127. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  128. optimizer = self.default_optimizer(
  129. learning_rate=learning_rate,
  130. lr_decay_epochs=lr_decay_epochs,
  131. lr_decay_gamma=lr_decay_gamma,
  132. num_steps_each_epoch=num_steps_each_epoch)
  133. self.optimizer = optimizer
  134. # 构建训练、验证、预测网络
  135. self.build_program()
  136. # 初始化网络权重
  137. self.net_initialize(
  138. startup_prog=fluid.default_startup_program(),
  139. pretrain_weights=pretrain_weights,
  140. save_dir=save_dir,
  141. sensitivities_file=sensitivities_file,
  142. eval_metric_loss=eval_metric_loss)
  143. # 训练
  144. self.train_loop(
  145. num_epochs=num_epochs,
  146. train_dataset=train_dataset,
  147. train_batch_size=train_batch_size,
  148. eval_dataset=eval_dataset,
  149. save_interval_epochs=save_interval_epochs,
  150. log_interval_steps=log_interval_steps,
  151. save_dir=save_dir,
  152. use_vdl=use_vdl)
  153. def evaluate(self,
  154. eval_dataset,
  155. batch_size=1,
  156. epoch_id=None,
  157. return_details=False):
  158. """评估。
  159. Args:
  160. eval_dataset (paddlex.datasets): 验证数据读取器。
  161. batch_size (int): 验证数据批大小。默认为1。
  162. epoch_id (int): 当前评估模型所在的训练轮数。
  163. return_details (bool): 是否返回详细信息。
  164. Returns:
  165. dict: 当return_details为False时,返回dict, 包含关键字:'acc1'、'acc5',
  166. 分别表示最大值的accuracy、前5个最大值的accuracy。
  167. tuple (metrics, eval_details): 当return_details为True时,增加返回dict,
  168. 包含关键字:'true_labels'、'pred_scores',分别代表真实类别id、每个类别的预测得分。
  169. """
  170. self.arrange_transforms(
  171. transforms=eval_dataset.transforms, mode='eval')
  172. data_generator = eval_dataset.generator(
  173. batch_size=batch_size, drop_last=False)
  174. k = min(5, self.num_classes)
  175. total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
  176. true_labels = list()
  177. pred_scores = list()
  178. if not hasattr(self, 'parallel_test_prog'):
  179. self.parallel_test_prog = fluid.CompiledProgram(
  180. self.test_prog).with_data_parallel(
  181. share_vars_from=self.parallel_train_prog)
  182. batch_size_each_gpu = self._get_single_card_bs(batch_size)
  183. logging.info(
  184. "Start to evaluating(total_samples={}, total_steps={})...".format(
  185. eval_dataset.num_samples, total_steps))
  186. for step, data in tqdm.tqdm(
  187. enumerate(data_generator()), total=total_steps):
  188. images = np.array([d[0] for d in data]).astype('float32')
  189. labels = [d[1] for d in data]
  190. num_samples = images.shape[0]
  191. if num_samples < batch_size:
  192. num_pad_samples = batch_size - num_samples
  193. pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
  194. images = np.concatenate([images, pad_images])
  195. outputs = self.exe.run(
  196. self.parallel_test_prog,
  197. feed={'image': images},
  198. fetch_list=list(self.test_outputs.values()))
  199. outputs = [outputs[0][:num_samples]]
  200. true_labels.extend(labels)
  201. pred_scores.extend(outputs[0].tolist())
  202. logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
  203. epoch_id, step + 1, total_steps))
  204. pred_top1_label = np.argsort(pred_scores)[:, -1]
  205. pred_topk_label = np.argsort(pred_scores)[:, -k:]
  206. acc1 = sum(pred_top1_label == true_labels) / len(true_labels)
  207. acck = sum(
  208. [np.isin(x, y)
  209. for x, y in zip(true_labels, pred_topk_label)]) / len(true_labels)
  210. metrics = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck)])
  211. if return_details:
  212. eval_details = {
  213. 'true_labels': true_labels,
  214. 'pred_scores': pred_scores
  215. }
  216. return metrics, eval_details
  217. return metrics
  218. def predict(self, img_file, transforms=None, topk=1):
  219. """预测。
  220. Args:
  221. img_file (str): 预测图像路径。
  222. transforms (paddlex.cls.transforms): 数据预处理操作。
  223. topk (int): 预测时前k个最大值。
  224. Returns:
  225. list: 其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
  226. 分别对应预测类别id、预测类别标签、预测得分。
  227. """
  228. if transforms is None and not hasattr(self, 'test_transforms'):
  229. raise Exception("transforms need to be defined, now is None.")
  230. true_topk = min(self.num_classes, topk)
  231. if transforms is not None:
  232. self.arrange_transforms(transforms=transforms, mode='test')
  233. im = transforms(img_file)
  234. else:
  235. self.arrange_transforms(
  236. transforms=self.test_transforms, mode='test')
  237. im = self.test_transforms(img_file)
  238. result = self.exe.run(
  239. self.test_prog,
  240. feed={'image': im},
  241. fetch_list=list(self.test_outputs.values()))
  242. pred_label = np.argsort(result[0][0])[::-1][:true_topk]
  243. res = [{
  244. 'category_id': l,
  245. 'category': self.labels[l],
  246. 'score': result[0][0][l]
  247. } for l in pred_label]
  248. return res
  249. class ResNet18(BaseClassifier):
  250. def __init__(self, num_classes=1000):
  251. super(ResNet18, self).__init__(
  252. model_name='ResNet18', num_classes=num_classes)
  253. class ResNet34(BaseClassifier):
  254. def __init__(self, num_classes=1000):
  255. super(ResNet34, self).__init__(
  256. model_name='ResNet34', num_classes=num_classes)
  257. class ResNet50(BaseClassifier):
  258. def __init__(self, num_classes=1000):
  259. super(ResNet50, self).__init__(
  260. model_name='ResNet50', num_classes=num_classes)
  261. class ResNet101(BaseClassifier):
  262. def __init__(self, num_classes=1000):
  263. super(ResNet101, self).__init__(
  264. model_name='ResNet101', num_classes=num_classes)
  265. class ResNet50_vd(BaseClassifier):
  266. def __init__(self, num_classes=1000):
  267. super(ResNet50_vd, self).__init__(
  268. model_name='ResNet50_vd', num_classes=num_classes)
  269. class ResNet101_vd(BaseClassifier):
  270. def __init__(self, num_classes=1000):
  271. super(ResNet101_vd, self).__init__(
  272. model_name='ResNet101_vd', num_classes=num_classes)
  273. class ResNet50_vd_ssld(BaseClassifier):
  274. def __init__(self, num_classes=1000):
  275. super(ResNet50_vd_ssld, self).__init__(model_name='ResNet50_vd_ssld',
  276. num_classes=num_classes)
  277. class ResNet101_vd_ssld(BaseClassifier):
  278. def __init__(self, num_classes=1000):
  279. super(ResNet101_vd_ssld, self).__init__(model_name='ResNet101_vd_ssld',
  280. num_classes=num_classes)
  281. class DarkNet53(BaseClassifier):
  282. def __init__(self, num_classes=1000):
  283. super(DarkNet53, self).__init__(
  284. model_name='DarkNet53', num_classes=num_classes)
  285. class MobileNetV1(BaseClassifier):
  286. def __init__(self, num_classes=1000):
  287. super(MobileNetV1, self).__init__(
  288. model_name='MobileNetV1', num_classes=num_classes)
  289. class MobileNetV2(BaseClassifier):
  290. def __init__(self, num_classes=1000):
  291. super(MobileNetV2, self).__init__(
  292. model_name='MobileNetV2', num_classes=num_classes)
  293. class MobileNetV3_small(BaseClassifier):
  294. def __init__(self, num_classes=1000):
  295. super(MobileNetV3_small, self).__init__(
  296. model_name='MobileNetV3_small', num_classes=num_classes)
  297. class MobileNetV3_large(BaseClassifier):
  298. def __init__(self, num_classes=1000):
  299. super(MobileNetV3_large, self).__init__(
  300. model_name='MobileNetV3_large', num_classes=num_classes)
  301. class MobileNetV3_small_ssld(BaseClassifier):
  302. def __init__(self, num_classes=1000):
  303. super(MobileNetV3_small_ssld, self).__init__(model_name='MobileNetV3_small_ssld',
  304. num_classes=num_classes)
  305. class MobileNetV3_large_ssld(BaseClassifier):
  306. def __init__(self, num_classes=1000):
  307. super(MobileNetV3_large_ssld, self).__init__(model_name='MobileNetV3_large_ssld',
  308. num_classes=num_classes)
  309. class Xception65(BaseClassifier):
  310. def __init__(self, num_classes=1000):
  311. super(Xception65, self).__init__(
  312. model_name='Xception65', num_classes=num_classes)
  313. class Xception41(BaseClassifier):
  314. def __init__(self, num_classes=1000):
  315. super(Xception41, self).__init__(
  316. model_name='Xception41', num_classes=num_classes)
  317. class DenseNet121(BaseClassifier):
  318. def __init__(self, num_classes=1000):
  319. super(DenseNet121, self).__init__(
  320. model_name='DenseNet121', num_classes=num_classes)
  321. class DenseNet161(BaseClassifier):
  322. def __init__(self, num_classes=1000):
  323. super(DenseNet161, self).__init__(
  324. model_name='DenseNet161', num_classes=num_classes)
  325. class DenseNet201(BaseClassifier):
  326. def __init__(self, num_classes=1000):
  327. super(DenseNet201, self).__init__(
  328. model_name='DenseNet201', num_classes=num_classes)
  329. class ShuffleNetV2(BaseClassifier):
  330. def __init__(self, num_classes=1000):
  331. super(ShuffleNetV2, self).__init__(
  332. model_name='ShuffleNetV2', num_classes=num_classes)