| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/runtime/backends/tensorrt/utils.h"
- namespace ultra_infer {
- int ShapeRangeInfo::Update(const std::vector<int64_t> &new_shape) {
- if (new_shape.size() != shape.size()) {
- return -1;
- }
- int need_update_engine = 0;
- for (size_t i = 0; i < shape.size(); ++i) {
- if (is_static[i] == 1 && new_shape[i] != shape[i]) {
- return -1;
- }
- if (new_shape[i] < min[i] || min[i] < 0) {
- need_update_engine = 1;
- }
- if (new_shape[i] > max[i] || max[i] < 0) {
- need_update_engine = 1;
- }
- }
- if (need_update_engine == 0) {
- return 0;
- }
- FDWARNING << "[New Shape Out of Range] input name: " << name
- << ", shape: " << new_shape
- << ", The shape range before: min_shape=" << min
- << ", max_shape=" << max << "." << std::endl;
- for (size_t i = 0; i < shape.size(); ++i) {
- if (new_shape[i] < min[i] || min[i] < 0) {
- min[i] = new_shape[i];
- }
- if (new_shape[i] > max[i] || max[i] < 0) {
- max[i] = new_shape[i];
- }
- }
- FDWARNING
- << "[New Shape Out of Range] The updated shape range now: min_shape="
- << min << ", max_shape=" << max << "." << std::endl;
- return need_update_engine;
- }
- size_t TrtDataTypeSize(const nvinfer1::DataType &dtype) {
- if (dtype == nvinfer1::DataType::kFLOAT) {
- return sizeof(float);
- } else if (dtype == nvinfer1::DataType::kHALF) {
- return sizeof(float) / 2;
- } else if (dtype == nvinfer1::DataType::kINT8) {
- return sizeof(int8_t);
- } else if (dtype == nvinfer1::DataType::kINT32) {
- return sizeof(int32_t);
- }
- // kBOOL
- return sizeof(bool);
- }
- FDDataType GetFDDataType(const nvinfer1::DataType &dtype) {
- if (dtype == nvinfer1::DataType::kFLOAT) {
- return FDDataType::FP32;
- } else if (dtype == nvinfer1::DataType::kHALF) {
- return FDDataType::FP16;
- } else if (dtype == nvinfer1::DataType::kINT8) {
- return FDDataType::INT8;
- } else if (dtype == nvinfer1::DataType::kINT32) {
- return FDDataType::INT32;
- }
- // kBOOL
- return FDDataType::BOOL;
- }
- nvinfer1::DataType ReaderDtypeToTrtDtype(int reader_dtype) {
- if (reader_dtype == 0) {
- return nvinfer1::DataType::kFLOAT;
- } else if (reader_dtype == 1) {
- FDASSERT(false, "TensorRT cannot support data type of double now.");
- } else if (reader_dtype == 2) {
- FDASSERT(false, "TensorRT cannot support data type of uint8 now.");
- } else if (reader_dtype == 3) {
- return nvinfer1::DataType::kINT8;
- } else if (reader_dtype == 4) {
- return nvinfer1::DataType::kINT32;
- } else if (reader_dtype == 5) {
- // regard int64 as int32
- return nvinfer1::DataType::kINT32;
- } else if (reader_dtype == 6) {
- return nvinfer1::DataType::kHALF;
- }
- FDASSERT(false, "Received unexpected data type of %d", reader_dtype);
- return nvinfer1::DataType::kFLOAT;
- }
- FDDataType ReaderDtypeToFDDtype(int reader_dtype) {
- if (reader_dtype == 0) {
- return FDDataType::FP32;
- } else if (reader_dtype == 1) {
- return FDDataType::FP64;
- } else if (reader_dtype == 2) {
- return FDDataType::UINT8;
- } else if (reader_dtype == 3) {
- return FDDataType::INT8;
- } else if (reader_dtype == 4) {
- return FDDataType::INT32;
- } else if (reader_dtype == 5) {
- return FDDataType::INT64;
- } else if (reader_dtype == 6) {
- return FDDataType::FP16;
- }
- FDASSERT(false, "Received unexpected data type of %d", reader_dtype);
- return FDDataType::FP32;
- }
- std::vector<int> ToVec(const nvinfer1::Dims &dim) {
- std::vector<int> out(dim.d, dim.d + dim.nbDims);
- return out;
- }
- int64_t Volume(const nvinfer1::Dims &d) {
- return std::accumulate(d.d, d.d + d.nbDims, 1, std::multiplies<int64_t>());
- }
- nvinfer1::Dims ToDims(const std::vector<int> &vec) {
- int limit = static_cast<int>(nvinfer1::Dims::MAX_DIMS);
- if (static_cast<int>(vec.size()) > limit) {
- FDWARNING << "Vector too long, only first 8 elements are used in dimension."
- << std::endl;
- }
- // Pick first nvinfer1::Dims::MAX_DIMS elements
- nvinfer1::Dims dims{std::min(static_cast<int>(vec.size()), limit), {}};
- std::copy_n(vec.begin(), dims.nbDims, std::begin(dims.d));
- return dims;
- }
- nvinfer1::Dims ToDims(const std::vector<int64_t> &vec) {
- int limit = static_cast<int>(nvinfer1::Dims::MAX_DIMS);
- if (static_cast<int>(vec.size()) > limit) {
- FDWARNING << "Vector too long, only first 8 elements are used in dimension."
- << std::endl;
- }
- // Pick first nvinfer1::Dims::MAX_DIMS elements
- nvinfer1::Dims dims{std::min(static_cast<int>(vec.size()), limit), {}};
- std::copy_n(vec.begin(), dims.nbDims, std::begin(dims.d));
- return dims;
- }
- } // namespace ultra_infer
|