| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/classification/ppcls/postprocessor.h"
- #include "ultra_infer/vision/classification/ppcls/preprocessor.h"
- namespace ultra_infer {
- namespace vision {
- /** \brief All classification model APIs are defined inside this namespace
- *
- */
- namespace classification {
- /*! @brief PaddleClas serials model object used when to load a PaddleClas model
- * exported by PaddleClas repository
- */
- class ULTRAINFER_DECL PaddleClasModel : public UltraInferModel {
- public:
- /** \brief Set path of model file and configuration file, and the
- * configuration of runtime
- *
- * \param[in] model_file Path of model file, e.g resnet/model.pdmodel
- * \param[in] params_file Path of parameter file, e.g resnet/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * config_file Path of configuration file for deployment, e.g
- * resnet/infer_cfg.yml \param[in] custom_option RuntimeOption for inference,
- * the default will use cpu, and choose the backend defined in
- * `valid_cpu_backends` \param[in] model_format Model format of the loaded
- * model, default is Paddle format
- */
- PaddleClasModel(const std::string &model_file, const std::string ¶ms_file,
- const std::string &config_file,
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::PADDLE);
- /** \brief Clone a new PaddleClasModel with less memory usage when multiple
- * instances of the same model are created
- *
- * \return new PaddleClasModel* type unique pointer
- */
- virtual std::unique_ptr<PaddleClasModel> Clone() const;
- /// Get model's name
- virtual std::string ModelName() const { return "PaddleClas/Model"; }
- /** \brief DEPRECATED Predict the classification result for an input image,
- * remove at 1.0 version
- *
- * \param[in] im The input image data, comes from cv::imread()
- * \param[in] result The output classification result will be written to this
- * structure \return true if the prediction succeeded, otherwise false
- */
- virtual bool Predict(cv::Mat *im, ClassifyResult *result, int topk = 1);
- /** \brief Predict the classification result for an input image
- *
- * \param[in] img The input image data, comes from cv::imread()
- * \param[in] result The output classification result
- * \return true if the prediction succeeded, otherwise false
- */
- virtual bool Predict(const cv::Mat &img, ClassifyResult *result);
- /** \brief Predict the classification results for a batch of input images
- *
- * \param[in] imgs, The input image list, each element comes from cv::imread()
- * \param[in] results The output classification result list
- * \return true if the prediction succeeded, otherwise false
- */
- virtual bool BatchPredict(const std::vector<cv::Mat> &imgs,
- std::vector<ClassifyResult> *results);
- /** \brief Predict the classification result for an input image
- *
- * \param[in] mat The input mat
- * \param[in] result The output classification result
- * \return true if the prediction succeeded, otherwise false
- */
- virtual bool Predict(const FDMat &mat, ClassifyResult *result);
- /** \brief Predict the classification results for a batch of input images
- *
- * \param[in] mats, The input mat list
- * \param[in] results The output classification result list
- * \return true if the prediction succeeded, otherwise false
- */
- virtual bool BatchPredict(const std::vector<FDMat> &mats,
- std::vector<ClassifyResult> *results);
- /// Get preprocessor reference of PaddleClasModel
- virtual PaddleClasPreprocessor &GetPreprocessor() { return preprocessor_; }
- /// Get postprocessor reference of PaddleClasModel
- virtual PaddleClasPostprocessor &GetPostprocessor() { return postprocessor_; }
- protected:
- bool Initialize();
- PaddleClasPreprocessor preprocessor_;
- PaddleClasPostprocessor postprocessor_;
- };
- typedef PaddleClasModel PPLCNet;
- typedef PaddleClasModel PPLCNetv2;
- typedef PaddleClasModel EfficientNet;
- typedef PaddleClasModel GhostNet;
- typedef PaddleClasModel MobileNetv1;
- typedef PaddleClasModel MobileNetv2;
- typedef PaddleClasModel MobileNetv3;
- typedef PaddleClasModel ShuffleNetv2;
- typedef PaddleClasModel SqueezeNet;
- typedef PaddleClasModel Inceptionv3;
- typedef PaddleClasModel PPHGNet;
- typedef PaddleClasModel ResNet50vd;
- typedef PaddleClasModel SwinTransformer;
- } // namespace classification
- } // namespace vision
- } // namespace ultra_infer
|