| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace utils {
- float CosineSimilarity(const std::vector<float> &a, const std::vector<float> &b,
- bool normalized) {
- FDASSERT((a.size() == b.size()) && (a.size() != 0),
- "The size of a and b must be equal and >= 1.");
- size_t num_val = a.size();
- if (normalized) {
- float mul_a = 0.f, mul_b = 0.f, mul_ab = 0.f;
- for (size_t i = 0; i < num_val; ++i) {
- mul_a += (a[i] * a[i]);
- mul_b += (b[i] * b[i]);
- mul_ab += (a[i] * b[i]);
- }
- return (mul_ab / (std::sqrt(mul_a) * std::sqrt(mul_b)));
- }
- auto norm_a = L2Normalize(a);
- auto norm_b = L2Normalize(b);
- float mul_a = 0.f, mul_b = 0.f, mul_ab = 0.f;
- for (size_t i = 0; i < num_val; ++i) {
- mul_a += (norm_a[i] * norm_a[i]);
- mul_b += (norm_b[i] * norm_b[i]);
- mul_ab += (norm_a[i] * norm_b[i]);
- }
- return (mul_ab / (std::sqrt(mul_a) * std::sqrt(mul_b)));
- }
- } // namespace utils
- } // namespace vision
- } // namespace ultra_infer
|