| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // reference:
- // https://github.com/deepinsight/insightface/blob/master/recognition/_tools_/cpp_align/face_align.h
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace utils {
- cv::Mat MeanAxis0(const cv::Mat &src) {
- int num = src.rows;
- int dim = src.cols;
- cv::Mat output(1, dim, CV_32F);
- for (int i = 0; i < dim; i++) {
- float sum = 0;
- for (int j = 0; j < num; j++) {
- sum += src.at<float>(j, i);
- }
- output.at<float>(0, i) = sum / num;
- }
- return output;
- }
- cv::Mat ElementwiseMinus(const cv::Mat &A, const cv::Mat &B) {
- cv::Mat output(A.rows, A.cols, A.type());
- assert(B.cols == A.cols);
- if (B.cols == A.cols) {
- for (int i = 0; i < A.rows; i++) {
- for (int j = 0; j < B.cols; j++) {
- output.at<float>(i, j) = A.at<float>(i, j) - B.at<float>(0, j);
- }
- }
- }
- return output;
- }
- cv::Mat VarAxis0(const cv::Mat &src) {
- cv::Mat temp_ = ElementwiseMinus(src, MeanAxis0(src));
- cv::multiply(temp_, temp_, temp_);
- return MeanAxis0(temp_);
- }
- int MatrixRank(cv::Mat M) {
- cv::Mat w, u, vt;
- cv::SVD::compute(M, w, u, vt);
- cv::Mat1b non_zero_singular_values = w > 0.0001;
- int rank = countNonZero(non_zero_singular_values);
- return rank;
- }
- cv::Mat SimilarTransform(cv::Mat &dst, cv::Mat &src) {
- int num = dst.rows;
- int dim = dst.cols;
- cv::Mat src_mean = MeanAxis0(dst);
- cv::Mat dst_mean = MeanAxis0(src);
- cv::Mat src_demean = ElementwiseMinus(dst, src_mean);
- cv::Mat dst_demean = ElementwiseMinus(src, dst_mean);
- cv::Mat A = (dst_demean.t() * src_demean) / static_cast<float>(num);
- cv::Mat d(dim, 1, CV_32F);
- d.setTo(1.0f);
- if (cv::determinant(A) < 0) {
- d.at<float>(dim - 1, 0) = -1;
- }
- cv::Mat T = cv::Mat::eye(dim + 1, dim + 1, CV_32F);
- cv::Mat U, S, V;
- cv::SVD::compute(A, S, U, V);
- int rank = MatrixRank(A);
- if (rank == 0) {
- assert(rank == 0);
- } else if (rank == dim - 1) {
- if (cv::determinant(U) * cv::determinant(V) > 0) {
- T.rowRange(0, dim).colRange(0, dim) = U * V;
- } else {
- int s = d.at<float>(dim - 1, 0) = -1;
- d.at<float>(dim - 1, 0) = -1;
- T.rowRange(0, dim).colRange(0, dim) = U * V;
- cv::Mat diag_ = cv::Mat::diag(d);
- cv::Mat twp = diag_ * V; // np.dot(np.diag(d), V.T)
- cv::Mat B = cv::Mat::zeros(3, 3, CV_8UC1);
- cv::Mat C = B.diag(0);
- T.rowRange(0, dim).colRange(0, dim) = U * twp;
- d.at<float>(dim - 1, 0) = s;
- }
- } else {
- cv::Mat diag_ = cv::Mat::diag(d);
- cv::Mat twp = diag_ * V.t(); // np.dot(np.diag(d), V.T)
- cv::Mat res = U * twp; // U
- T.rowRange(0, dim).colRange(0, dim) = -U.t() * twp;
- }
- cv::Mat var_ = VarAxis0(src_demean);
- float val = cv::sum(var_).val[0];
- cv::Mat res;
- cv::multiply(d, S, res);
- float scale = 1.0 / val * cv::sum(res).val[0];
- T.rowRange(0, dim).colRange(0, dim) =
- -T.rowRange(0, dim).colRange(0, dim).t();
- cv::Mat temp1 = T.rowRange(0, dim).colRange(0, dim); // T[:dim, :dim]
- cv::Mat temp2 = src_mean.t(); // src_mean.T
- cv::Mat temp3 = temp1 * temp2; // np.dot(T[:dim, :dim], src_mean.T)
- cv::Mat temp4 = scale * temp3;
- T.rowRange(0, dim).colRange(dim, dim + 1) = -(temp4 - dst_mean.t());
- T.rowRange(0, dim).colRange(0, dim) *= scale;
- return T;
- }
- std::vector<cv::Mat>
- AlignFaceWithFivePoints(cv::Mat &image, FaceDetectionResult &result,
- std::vector<std::array<float, 2>> std_landmarks,
- std::array<int, 2> output_size) {
- FDASSERT(std_landmarks.size() == 5, "The landmarks.size() must be 5.")
- FDASSERT(!image.empty(), "The input_image can't be empty.")
- std::vector<cv::Mat> output_images;
- output_images.reserve(result.scores.size());
- if (result.boxes.empty()) {
- FDWARNING << "The result is empty." << std::endl;
- return output_images;
- }
- cv::Mat src(5, 2, CV_32FC1, std_landmarks.data());
- for (int i = 0; i < result.landmarks.size(); i += 5) {
- cv::Mat dst(5, 2, CV_32FC1, result.landmarks.data() + i);
- cv::Mat m = SimilarTransform(dst, src);
- cv::Mat map_matrix;
- cv::Rect map_matrix_r = cv::Rect(0, 0, 3, 2);
- cv::Mat(m, map_matrix_r).copyTo(map_matrix);
- cv::Mat cropped_image_aligned;
- cv::warpAffine(image, cropped_image_aligned, map_matrix,
- {output_size[0], output_size[1]});
- if (cropped_image_aligned.empty()) {
- FDWARNING << "croppedImageAligned is empty." << std::endl;
- }
- output_images.emplace_back(cropped_image_aligned);
- }
- return output_images;
- }
- } // namespace utils
- } // namespace vision
- } // namespace ultra_infer
|