| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace utils {
- // The implementation refers to
- // https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/cpp/src/utils.cc
- void NMS(DetectionResult *result, float iou_threshold,
- std::vector<int> *index) {
- // get sorted score indices
- std::vector<int> sorted_indices;
- if (index != nullptr) {
- std::map<float, int, std::greater<float>> score_map;
- for (size_t i = 0; i < result->scores.size(); ++i) {
- score_map.insert(std::pair<float, int>(result->scores[i], i));
- }
- for (auto iter : score_map) {
- sorted_indices.push_back(iter.second);
- }
- }
- utils::SortDetectionResult(result);
- std::vector<float> area_of_boxes(result->boxes.size());
- std::vector<int> suppressed(result->boxes.size(), 0);
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- area_of_boxes[i] = (result->boxes[i][2] - result->boxes[i][0]) *
- (result->boxes[i][3] - result->boxes[i][1]);
- }
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- if (suppressed[i] == 1) {
- continue;
- }
- for (size_t j = i + 1; j < result->boxes.size(); ++j) {
- if (suppressed[j] == 1) {
- continue;
- }
- float xmin = std::max(result->boxes[i][0], result->boxes[j][0]);
- float ymin = std::max(result->boxes[i][1], result->boxes[j][1]);
- float xmax = std::min(result->boxes[i][2], result->boxes[j][2]);
- float ymax = std::min(result->boxes[i][3], result->boxes[j][3]);
- float overlap_w = std::max(0.0f, xmax - xmin);
- float overlap_h = std::max(0.0f, ymax - ymin);
- float overlap_area = overlap_w * overlap_h;
- float overlap_ratio =
- overlap_area / (area_of_boxes[i] + area_of_boxes[j] - overlap_area);
- if (overlap_ratio > iou_threshold) {
- suppressed[j] = 1;
- }
- }
- }
- DetectionResult backup(*result);
- result->Clear();
- result->Reserve(suppressed.size());
- for (size_t i = 0; i < suppressed.size(); ++i) {
- if (suppressed[i] == 1) {
- continue;
- }
- result->boxes.emplace_back(backup.boxes[i]);
- result->scores.push_back(backup.scores[i]);
- result->label_ids.push_back(backup.label_ids[i]);
- if (index != nullptr) {
- index->push_back(sorted_indices[i]);
- }
- }
- }
- void NMS(FaceDetectionResult *result, float iou_threshold) {
- utils::SortDetectionResult(result);
- std::vector<float> area_of_boxes(result->boxes.size());
- std::vector<int> suppressed(result->boxes.size(), 0);
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- area_of_boxes[i] = (result->boxes[i][2] - result->boxes[i][0]) *
- (result->boxes[i][3] - result->boxes[i][1]);
- }
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- if (suppressed[i] == 1) {
- continue;
- }
- for (size_t j = i + 1; j < result->boxes.size(); ++j) {
- if (suppressed[j] == 1) {
- continue;
- }
- float xmin = std::max(result->boxes[i][0], result->boxes[j][0]);
- float ymin = std::max(result->boxes[i][1], result->boxes[j][1]);
- float xmax = std::min(result->boxes[i][2], result->boxes[j][2]);
- float ymax = std::min(result->boxes[i][3], result->boxes[j][3]);
- float overlap_w = std::max(0.0f, xmax - xmin);
- float overlap_h = std::max(0.0f, ymax - ymin);
- float overlap_area = overlap_w * overlap_h;
- float overlap_ratio =
- overlap_area / (area_of_boxes[i] + area_of_boxes[j] - overlap_area);
- if (overlap_ratio > iou_threshold) {
- suppressed[j] = 1;
- }
- }
- }
- FaceDetectionResult backup(*result);
- int landmarks_per_face = result->landmarks_per_face;
- result->Clear();
- // don't forget to reset the landmarks_per_face
- // before apply Reserve method.
- result->landmarks_per_face = landmarks_per_face;
- result->Reserve(suppressed.size());
- for (size_t i = 0; i < suppressed.size(); ++i) {
- if (suppressed[i] == 1) {
- continue;
- }
- result->boxes.emplace_back(backup.boxes[i]);
- result->scores.push_back(backup.scores[i]);
- // landmarks (if have)
- if (result->landmarks_per_face > 0) {
- for (size_t j = 0; j < result->landmarks_per_face; ++j) {
- result->landmarks.emplace_back(
- backup.landmarks[i * result->landmarks_per_face + j]);
- }
- }
- }
- }
- } // namespace utils
- } // namespace vision
- } // namespace ultra_infer
|