| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <algorithm>
- #include "opencv2/calib3d/calib3d.hpp"
- #include "opencv2/imgproc/imgproc.hpp"
- #include "ultra_infer/vision/visualize/visualize.h"
- #include "yaml-cpp/yaml.h"
- namespace ultra_infer {
- namespace vision {
- using matrix = std::vector<std::vector<float>>;
- matrix Multiple(const matrix a, const matrix b) {
- const int m = a.size(); // a rows
- if (m == 0) {
- matrix c;
- return c;
- }
- if (a[0].size() != b.size()) {
- FDERROR << "A[m,n] * B[p,q], n must equal to p." << std::endl;
- matrix c;
- return c;
- }
- const int n = a[0].size(); // a cols
- const int p = b[0].size(); // b cols
- matrix c(m, std::vector<float>(p, 0));
- for (auto i = 0; i < m; i++) {
- for (auto j = 0; j < p; j++) {
- for (auto k = 0; k < n; k++)
- c[i][j] += a[i][k] * b[k][j];
- }
- }
- return c;
- }
- cv::Mat VisPerception(const cv::Mat &im, const PerceptionResult &result,
- const std::string &config_file, float score_threshold,
- int line_size, float font_size) {
- if (result.scores.empty()) {
- return im;
- }
- YAML::Node cfg;
- try {
- cfg = YAML::LoadFile(config_file);
- } catch (YAML::BadFile &e) {
- FDERROR << "Failed to load yaml file " << config_file
- << ", maybe you should check this file." << std::endl;
- return im;
- }
- std::vector<int> target_size;
- for (const auto &op : cfg["Preprocess"]) {
- std::string op_name = op["type"].as<std::string>();
- if (op_name == "Resize") {
- target_size = op["target_size"].as<std::vector<int>>();
- }
- }
- std::vector<float> vec_k_data = cfg["k_data"].as<std::vector<float>>();
- if (vec_k_data.size() != 9) {
- FDERROR
- << "The K data load from the yaml file: " << config_file
- << " is unexpected, the expected size is 9, but the loaded size is: "
- << vec_k_data.size() << " ,maybe you should check this file."
- << std::endl;
- return im;
- }
- matrix k_data(3, std::vector<float>());
- for (auto j = 0; j < 3; j++) {
- k_data[j].insert(k_data[j].begin(), vec_k_data.begin() + j * 3,
- vec_k_data.begin() + j * 3 + 3);
- }
- std::vector<double> rvec = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
- std::vector<double> tvec = {0, 0, 0};
- matrix connect_line_id = {{1, 0}, {2, 7}, {3, 6}, {4, 5}, {1, 2}, {2, 3},
- {3, 4}, {4, 1}, {0, 7}, {7, 6}, {6, 5}, {5, 0}};
- int max_label_id =
- *std::max_element(result.label_ids.begin(), result.label_ids.end());
- std::vector<int> color_map = GenerateColorMap(max_label_id);
- int h = im.rows;
- int w = im.cols;
- cv::Mat vis_im = im.clone();
- cv::resize(im, vis_im, cv::Size(target_size[1], target_size[0]), 0, 0, 0);
- for (size_t i = 0; i < result.scores.size(); ++i) {
- if (result.scores[i] < 0.5) {
- continue;
- }
- float h = result.boxes[i][4];
- float w = result.boxes[i][5];
- float l = result.boxes[i][6];
- float x = result.center[i][0];
- float y = result.center[i][1];
- float z = result.center[i][2];
- std::vector<float> x_corners = {0, l, l, l, l, 0, 0, 0};
- std::vector<float> y_corners = {0, 0, h, h, 0, 0, h, h};
- std::vector<float> z_corners = {0, 0, 0, w, w, w, w, 0};
- for (auto j = 0; j < x_corners.size(); j++) {
- x_corners[j] = x_corners[j] - l / 2;
- y_corners[j] = y_corners[j] - h;
- z_corners[j] = z_corners[j] - w / 2;
- }
- matrix corners_3d = {x_corners, y_corners, z_corners};
- float ry = result.yaw_angle[i];
- matrix rot_mat = {
- {cosf(ry), 0, sinf(ry)}, {0, 1, 0}, {sinf(ry), 0, cosf(ry)}};
- matrix rot_corners_3d = Multiple(rot_mat, corners_3d);
- for (auto j = 0; j < rot_corners_3d[0].size(); j++) {
- rot_corners_3d[0][j] += x;
- rot_corners_3d[1][j] += y;
- rot_corners_3d[2][j] += z;
- }
- auto corners_2d = Multiple(k_data, rot_corners_3d);
- for (auto j = 0; j < corners_2d[0].size(); j++) {
- corners_2d[0][j] /= corners_2d[2][j];
- corners_2d[1][j] /= corners_2d[2][j];
- }
- std::vector<float> box2d = {
- *std::min_element(corners_2d[0].begin(), corners_2d[0].end()),
- *std::min_element(corners_2d[1].begin(), corners_2d[1].end()),
- *std::max_element(corners_2d[0].begin(), corners_2d[0].end()),
- *std::max_element(corners_2d[1].begin(), corners_2d[1].end())};
- if (box2d[0] == 0 && box2d[1] == 0 && box2d[2] == 0 && box2d[3] == 0) {
- continue;
- }
- std::vector<cv::Point3f> points3d;
- for (auto j = 0; j < rot_corners_3d[0].size(); j++) {
- points3d.push_back(cv::Point3f(rot_corners_3d[0][j], rot_corners_3d[1][j],
- rot_corners_3d[2][j]));
- }
- cv::Mat rVec(3, 3, cv::DataType<double>::type, rvec.data());
- cv::Mat tVec(3, 1, cv::DataType<double>::type, tvec.data());
- std::vector<float> vec_k;
- for (auto &&v : k_data) {
- vec_k.insert(vec_k.end(), v.begin(), v.end());
- }
- cv::Mat intrinsicMat(3, 3, cv::DataType<float>::type, vec_k.data());
- cv::Mat distCoeffs(5, 1, cv::DataType<double>::type);
- std::vector<cv::Point2f> projectedPoints;
- cv::projectPoints(points3d, rVec, tVec, intrinsicMat, distCoeffs,
- projectedPoints);
- int c0 = color_map[3 * result.label_ids[i] + 0];
- int c1 = color_map[3 * result.label_ids[i] + 1];
- int c2 = color_map[3 * result.label_ids[i] + 2];
- cv::Scalar color = cv::Scalar(c0, c1, c2);
- for (auto id = 0; id < connect_line_id.size(); id++) {
- int p1 = connect_line_id[id][0];
- int p2 = connect_line_id[id][1];
- cv::line(vis_im, projectedPoints[p1], projectedPoints[p2], color, 1);
- }
- int font = cv::FONT_HERSHEY_SIMPLEX;
- std::string score = std::to_string(result.scores[i]);
- if (score.size() > 4) {
- score = score.substr(0, 4);
- }
- std::string text = std::to_string(result.label_ids[i]) + ", " + score;
- cv::Point2f original;
- original.x = box2d[0];
- original.y = box2d[1];
- cv::putText(vis_im, text, original, font, font_size,
- cv::Scalar(255, 255, 255), 1);
- }
- return vis_im;
- }
- } // namespace vision
- } // namespace ultra_infer
|