| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ....utils.deps import pipeline_requires_extra
- from ...utils.benchmark import benchmark
- from ..pp_shitu_v2 import ShiTuV2Pipeline
- from .result import FaceRecResult
- @benchmark.time_methods
- @pipeline_requires_extra("cv")
- class FaceRecPipeline(ShiTuV2Pipeline):
- """Face Recognition Pipeline"""
- entities = "face_recognition"
- def get_rec_result(
- self, raw_img, det_res, indexer, rec_threshold, hamming_radius, topk
- ):
- if len(det_res["boxes"]) == 0:
- return {"label": [], "score": []}
- subs_of_img = list(self.crop_by_boxes(raw_img, det_res["boxes"]))
- img_list = [img["img"] for img in subs_of_img]
- all_rec_res = list(self.rec_model(img_list))
- all_rec_res = indexer(
- [rec_res["feature"] for rec_res in all_rec_res],
- score_thres=rec_threshold,
- hamming_radius=hamming_radius,
- topk=topk,
- )
- output = {"label": [], "score": []}
- for res in all_rec_res:
- output["label"].append(res["label"])
- output["score"].append(res["score"])
- return output
- def get_final_result(self, input_data, raw_img, det_res, rec_res):
- single_img_res = {"input_path": input_data, "input_img": raw_img, "boxes": []}
- for i, obj in enumerate(det_res["boxes"]):
- rec_scores = rec_res["score"][i]
- if isinstance(rec_scores, np.ndarray):
- rec_scores = rec_scores.tolist()
- labels = rec_res["label"][i]
- single_img_res["boxes"].append(
- {
- "labels": labels,
- "rec_scores": rec_scores,
- "det_score": obj["score"],
- "coordinate": obj["coordinate"],
- }
- )
- return FaceRecResult(single_img_res)
|