| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import paddle
- import numpy as np
- def bbox2delta(src_boxes, tgt_boxes, weights):
- src_w = src_boxes[:, 2] - src_boxes[:, 0]
- src_h = src_boxes[:, 3] - src_boxes[:, 1]
- src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
- src_ctr_y = src_boxes[:, 1] + 0.5 * src_h
- tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
- tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
- tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
- tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h
- wx, wy, ww, wh = weights
- dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
- dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
- dw = ww * paddle.log(tgt_w / src_w)
- dh = wh * paddle.log(tgt_h / src_h)
- deltas = paddle.stack((dx, dy, dw, dh), axis=1)
- return deltas
- def delta2bbox(deltas, boxes, weights):
- clip_scale = math.log(1000.0 / 16)
- widths = boxes[:, 2] - boxes[:, 0]
- heights = boxes[:, 3] - boxes[:, 1]
- ctr_x = boxes[:, 0] + 0.5 * widths
- ctr_y = boxes[:, 1] + 0.5 * heights
- wx, wy, ww, wh = weights
- dx = deltas[:, 0::4] / wx
- dy = deltas[:, 1::4] / wy
- dw = deltas[:, 2::4] / ww
- dh = deltas[:, 3::4] / wh
- # Prevent sending too large values into paddle.exp()
- dw = paddle.clip(dw, max=clip_scale)
- dh = paddle.clip(dh, max=clip_scale)
- pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
- pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
- pred_w = paddle.exp(dw) * widths.unsqueeze(1)
- pred_h = paddle.exp(dh) * heights.unsqueeze(1)
- pred_boxes = []
- pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
- pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
- pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
- pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
- pred_boxes = paddle.stack(pred_boxes, axis=-1)
- return pred_boxes
- def expand_bbox(bboxes, scale):
- w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
- h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
- x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
- y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5
- w_half *= scale
- h_half *= scale
- bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
- bboxes_exp[:, 0] = x_c - w_half
- bboxes_exp[:, 2] = x_c + w_half
- bboxes_exp[:, 1] = y_c - h_half
- bboxes_exp[:, 3] = y_c + h_half
- return bboxes_exp
- def clip_bbox(boxes, im_shape):
- h, w = im_shape[0], im_shape[1]
- x1 = boxes[:, 0].clip(0, w)
- y1 = boxes[:, 1].clip(0, h)
- x2 = boxes[:, 2].clip(0, w)
- y2 = boxes[:, 3].clip(0, h)
- return paddle.stack([x1, y1, x2, y2], axis=1)
- def nonempty_bbox(boxes, min_size=0, return_mask=False):
- w = boxes[:, 2] - boxes[:, 0]
- h = boxes[:, 3] - boxes[:, 1]
- mask = paddle.logical_and(w > min_size, w > min_size)
- if return_mask:
- return mask
- keep = paddle.nonzero(mask).flatten()
- return keep
- def bbox_area(boxes):
- return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
- def bbox_overlaps(boxes1, boxes2):
- """
- Calculate overlaps between boxes1 and boxes2
- Args:
- boxes1 (Tensor): boxes with shape [M, 4]
- boxes2 (Tensor): boxes with shape [N, 4]
- Return:
- overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
- """
- M = boxes1.shape[0]
- N = boxes2.shape[0]
- if M * N == 0:
- return paddle.zeros([M, N], dtype='float32')
- area1 = bbox_area(boxes1)
- area2 = bbox_area(boxes2)
- xy_max = paddle.minimum(
- paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
- xy_min = paddle.maximum(
- paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
- width_height = xy_max - xy_min
- width_height = width_height.clip(min=0)
- inter = width_height.prod(axis=2)
- overlaps = paddle.where(inter > 0, inter /
- (paddle.unsqueeze(area1, 1) + area2 - inter),
- paddle.zeros_like(inter))
- return overlaps
- def xywh2xyxy(box):
- x, y, w, h = box
- x1 = x - w * 0.5
- y1 = y - h * 0.5
- x2 = x + w * 0.5
- y2 = y + h * 0.5
- return [x1, y1, x2, y2]
- def make_grid(h, w, dtype):
- yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
- return paddle.stack((xv, yv), 2).cast(dtype=dtype)
- def decode_yolo(box, anchor, downsample_ratio):
- """decode yolo box
- Args:
- box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
- anchor (list): anchor with the shape [na, 2]
- downsample_ratio (int): downsample ratio, default 32
- scale (float): scale, default 1.
- Return:
- box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
- """
- x, y, w, h = box
- na, grid_h, grid_w = x.shape[1:4]
- grid = make_grid(grid_h, grid_w, x.dtype).reshape(
- (1, 1, grid_h, grid_w, 2))
- x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
- y1 = (y + grid[:, :, :, :, 1:2]) / grid_h
- anchor = paddle.to_tensor(anchor)
- anchor = paddle.cast(anchor, x.dtype)
- anchor = anchor.reshape((1, na, 1, 1, 2))
- w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
- h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)
- return [x1, y1, w1, h1]
- def iou_similarity(box1, box2, eps=1e-9):
- """Calculate iou of box1 and box2
- Args:
- box1 (Tensor): box with the shape [N, M1, 4]
- box2 (Tensor): box with the shape [N, M2, 4]
- Return:
- iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
- """
- box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
- box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
- px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
- gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
- x1y1 = paddle.maximum(px1y1, gx1y1)
- x2y2 = paddle.minimum(px2y2, gx2y2)
- overlap = (x2y2 - x1y1).clip(0).prod(-1)
- area1 = (px2y2 - px1y1).clip(0).prod(-1)
- area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
- union = area1 + area2 - overlap + eps
- return overlap / union
- def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
- """calculate the iou of box1 and box2
- Args:
- box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
- box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
- giou (bool): whether use giou or not, default False
- diou (bool): whether use diou or not, default False
- ciou (bool): whether use ciou or not, default False
- eps (float): epsilon to avoid divide by zero
- Return:
- iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
- """
- px1, py1, px2, py2 = box1
- gx1, gy1, gx2, gy2 = box2
- x1 = paddle.maximum(px1, gx1)
- y1 = paddle.maximum(py1, gy1)
- x2 = paddle.minimum(px2, gx2)
- y2 = paddle.minimum(py2, gy2)
- overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))
- area1 = (px2 - px1) * (py2 - py1)
- area1 = area1.clip(0)
- area2 = (gx2 - gx1) * (gy2 - gy1)
- area2 = area2.clip(0)
- union = area1 + area2 - overlap + eps
- iou = overlap / union
- if giou or ciou or diou:
- # convex w, h
- cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
- ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
- if giou:
- c_area = cw * ch + eps
- return iou - (c_area - union) / c_area
- else:
- # convex diagonal squared
- c2 = cw**2 + ch**2 + eps
- # center distance
- rho2 = (
- (px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
- if diou:
- return iou - rho2 / c2
- else:
- w1, h1 = px2 - px1, py2 - py1 + eps
- w2, h2 = gx2 - gx1, gy2 - gy1 + eps
- delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
- v = (4 / math.pi**2) * paddle.pow(delta, 2)
- alpha = v / (1 + eps - iou + v)
- alpha.stop_gradient = True
- return iou - (rho2 / c2 + v * alpha)
- else:
- return iou
- def rect2rbox(bboxes):
- """
- :param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax)
- :return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle)
- """
- bboxes = bboxes.reshape(-1, 4)
- num_boxes = bboxes.shape[0]
- x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0
- y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0
- edges1 = np.abs(bboxes[:, 2] - bboxes[:, 0])
- edges2 = np.abs(bboxes[:, 3] - bboxes[:, 1])
- angles = np.zeros([num_boxes], dtype=bboxes.dtype)
- inds = edges1 < edges2
- rboxes = np.stack((x_ctr, y_ctr, edges1, edges2, angles), axis=1)
- rboxes[inds, 2] = edges2[inds]
- rboxes[inds, 3] = edges1[inds]
- rboxes[inds, 4] = np.pi / 2.0
- return rboxes
- def delta2rbox(rrois,
- deltas,
- means=[0, 0, 0, 0, 0],
- stds=[1, 1, 1, 1, 1],
- wh_ratio_clip=1e-6):
- """
- :param rrois: (cx, cy, w, h, theta)
- :param deltas: (dx, dy, dw, dh, dtheta)
- :param means:
- :param stds:
- :param wh_ratio_clip:
- :return:
- """
- means = paddle.to_tensor(means)
- stds = paddle.to_tensor(stds)
- deltas = paddle.reshape(deltas, [-1, deltas.shape[-1]])
- denorm_deltas = deltas * stds + means
- dx = denorm_deltas[:, 0]
- dy = denorm_deltas[:, 1]
- dw = denorm_deltas[:, 2]
- dh = denorm_deltas[:, 3]
- dangle = denorm_deltas[:, 4]
- max_ratio = np.abs(np.log(wh_ratio_clip))
- dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
- dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)
- rroi_x = rrois[:, 0]
- rroi_y = rrois[:, 1]
- rroi_w = rrois[:, 2]
- rroi_h = rrois[:, 3]
- rroi_angle = rrois[:, 4]
- gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin(
- rroi_angle) + rroi_x
- gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos(
- rroi_angle) + rroi_y
- gw = rroi_w * dw.exp()
- gh = rroi_h * dh.exp()
- ga = np.pi * dangle + rroi_angle
- ga = (ga + np.pi / 4) % np.pi - np.pi / 4
- ga = paddle.to_tensor(ga)
- gw = paddle.to_tensor(gw, dtype='float32')
- gh = paddle.to_tensor(gh, dtype='float32')
- bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
- return bboxes
- def rbox2delta(proposals, gt, means=[0, 0, 0, 0, 0], stds=[1, 1, 1, 1, 1]):
- """
- Args:
- proposals:
- gt:
- means: 1x5
- stds: 1x5
- Returns:
- """
- proposals = proposals.astype(np.float64)
- PI = np.pi
- gt_widths = gt[..., 2]
- gt_heights = gt[..., 3]
- gt_angle = gt[..., 4]
- proposals_widths = proposals[..., 2]
- proposals_heights = proposals[..., 3]
- proposals_angle = proposals[..., 4]
- coord = gt[..., 0:2] - proposals[..., 0:2]
- dx = (np.cos(proposals[..., 4]) * coord[..., 0] + np.sin(proposals[..., 4])
- * coord[..., 1]) / proposals_widths
- dy = (-np.sin(proposals[..., 4]) * coord[..., 0] +
- np.cos(proposals[..., 4]) * coord[..., 1]) / proposals_heights
- dw = np.log(gt_widths / proposals_widths)
- dh = np.log(gt_heights / proposals_heights)
- da = (gt_angle - proposals_angle)
- da = (da + PI / 4) % PI - PI / 4
- da /= PI
- deltas = np.stack([dx, dy, dw, dh, da], axis=-1)
- means = np.array(means, dtype=deltas.dtype)
- stds = np.array(stds, dtype=deltas.dtype)
- deltas = (deltas - means) / stds
- deltas = deltas.astype(np.float32)
- return deltas
- def bbox_decode(bbox_preds,
- anchors,
- means=[0, 0, 0, 0, 0],
- stds=[1, 1, 1, 1, 1]):
- """decode bbox from deltas
- Args:
- bbox_preds: [N,H,W,5]
- anchors: [H*W,5]
- return:
- bboxes: [N,H,W,5]
- """
- means = paddle.to_tensor(means)
- stds = paddle.to_tensor(stds)
- num_imgs, H, W, _ = bbox_preds.shape
- bboxes_list = []
- for img_id in range(num_imgs):
- bbox_pred = bbox_preds[img_id]
- # bbox_pred.shape=[5,H,W]
- bbox_delta = bbox_pred
- anchors = paddle.to_tensor(anchors)
- bboxes = delta2rbox(
- anchors, bbox_delta, means, stds, wh_ratio_clip=1e-6)
- bboxes = paddle.reshape(bboxes, [H, W, 5])
- bboxes_list.append(bboxes)
- return paddle.stack(bboxes_list, axis=0)
- def poly2rbox(polys):
- """
- poly:[x0,y0,x1,y1,x2,y2,x3,y3]
- to
- rotated_boxes:[x_ctr,y_ctr,w,h,angle]
- """
- rotated_boxes = []
- for poly in polys:
- poly = np.array(poly[:8], dtype=np.float32)
- pt1 = (poly[0], poly[1])
- pt2 = (poly[2], poly[3])
- pt3 = (poly[4], poly[5])
- pt4 = (poly[6], poly[7])
- edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[
- 1]) * (pt1[1] - pt2[1]))
- edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[
- 1]) * (pt2[1] - pt3[1]))
- width = max(edge1, edge2)
- height = min(edge1, edge2)
- rbox_angle = 0
- if edge1 > edge2:
- rbox_angle = np.arctan2(
- np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0]))
- elif edge2 >= edge1:
- rbox_angle = np.arctan2(
- np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0]))
- def norm_angle(angle, range=[-np.pi / 4, np.pi]):
- return (angle - range[0]) % range[1] + range[0]
- rbox_angle = norm_angle(rbox_angle)
- x_ctr = np.float(pt1[0] + pt3[0]) / 2
- y_ctr = np.float(pt1[1] + pt3[1]) / 2
- rotated_box = np.array([x_ctr, y_ctr, width, height, rbox_angle])
- rotated_boxes.append(rotated_box)
- ret_rotated_boxes = np.array(rotated_boxes)
- assert ret_rotated_boxes.shape[1] == 5
- return ret_rotated_boxes
- def cal_line_length(point1, point2):
- import math
- return math.sqrt(
- math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1],
- 2))
- def get_best_begin_point_single(coordinate):
- x1, y1, x2, y2, x3, y3, x4, y4 = coordinate
- xmin = min(x1, x2, x3, x4)
- ymin = min(y1, y2, y3, y4)
- xmax = max(x1, x2, x3, x4)
- ymax = max(y1, y2, y3, y4)
- combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]],
- [[x4, y4], [x1, y1], [x2, y2], [x3, y3]],
- [[x3, y3], [x4, y4], [x1, y1], [x2, y2]],
- [[x2, y2], [x3, y3], [x4, y4], [x1, y1]]]
- dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
- force = 100000000.0
- force_flag = 0
- for i in range(4):
- temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \
- + cal_line_length(combinate[i][1], dst_coordinate[1]) \
- + cal_line_length(combinate[i][2], dst_coordinate[2]) \
- + cal_line_length(combinate[i][3], dst_coordinate[3])
- if temp_force < force:
- force = temp_force
- force_flag = i
- if force_flag != 0:
- pass
- return np.array(combinate[force_flag]).reshape(8)
- def rbox2poly_np(rrects):
- """
- rrect:[x_ctr,y_ctr,w,h,angle]
- to
- poly:[x0,y0,x1,y1,x2,y2,x3,y3]
- """
- polys = []
- for i in range(rrects.shape[0]):
- rrect = rrects[i]
- # x_ctr, y_ctr, width, height, angle = rrect[:5]
- x_ctr = rrect[0]
- y_ctr = rrect[1]
- width = rrect[2]
- height = rrect[3]
- angle = rrect[4]
- tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
- rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
- R = np.array([[np.cos(angle), -np.sin(angle)],
- [np.sin(angle), np.cos(angle)]])
- poly = R.dot(rect)
- x0, x1, x2, x3 = poly[0, :4] + x_ctr
- y0, y1, y2, y3 = poly[1, :4] + y_ctr
- poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
- poly = get_best_begin_point_single(poly)
- polys.append(poly)
- polys = np.array(polys)
- return polys
- def rbox2poly(rrects):
- """
- rrect:[x_ctr,y_ctr,w,h,angle]
- to
- poly:[x0,y0,x1,y1,x2,y2,x3,y3]
- """
- N = paddle.shape(rrects)[0]
- x_ctr = rrects[:, 0]
- y_ctr = rrects[:, 1]
- width = rrects[:, 2]
- height = rrects[:, 3]
- angle = rrects[:, 4]
- tl_x, tl_y, br_x, br_y = -width * 0.5, -height * 0.5, width * 0.5, height * 0.5
- normal_rects = paddle.stack(
- [tl_x, br_x, br_x, tl_x, tl_y, tl_y, br_y, br_y], axis=0)
- normal_rects = paddle.reshape(normal_rects, [2, 4, N])
- normal_rects = paddle.transpose(normal_rects, [2, 0, 1])
- sin, cos = paddle.sin(angle), paddle.cos(angle)
- # M.shape=[N,2,2]
- M = paddle.stack([cos, -sin, sin, cos], axis=0)
- M = paddle.reshape(M, [2, 2, N])
- M = paddle.transpose(M, [2, 0, 1])
- # polys:[N,8]
- polys = paddle.matmul(M, normal_rects)
- polys = paddle.transpose(polys, [2, 1, 0])
- polys = paddle.reshape(polys, [-1, N])
- polys = paddle.transpose(polys, [1, 0])
- tmp = paddle.stack(
- [x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr], axis=1)
- polys = polys + tmp
- return polys
- def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16):
- """
- Calculate the iou of box1 and box2 with numpy.
- Args:
- box1 (ndarray): [N, 4]
- box2 (ndarray): [M, 4], usually N != M
- x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True
- eps (float): epsilon to avoid divide by zero
- Return:
- iou (ndarray): iou of box1 and box2, [N, M]
- """
- N, M = len(box1), len(box2) # usually N != M
- if x1y1x2y2:
- b1_x1, b1_y1 = box1[:, 0], box1[:, 1]
- b1_x2, b1_y2 = box1[:, 2], box1[:, 3]
- b2_x1, b2_y1 = box2[:, 0], box2[:, 1]
- b2_x2, b2_y2 = box2[:, 2], box2[:, 3]
- else:
- # cxcywh style
- # Transform from center and width to exact coordinates
- b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
- b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
- b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
- b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
- # get the coordinates of the intersection rectangle
- inter_rect_x1 = np.zeros((N, M), dtype=np.float32)
- inter_rect_y1 = np.zeros((N, M), dtype=np.float32)
- inter_rect_x2 = np.zeros((N, M), dtype=np.float32)
- inter_rect_y2 = np.zeros((N, M), dtype=np.float32)
- for i in range(len(box2)):
- inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i])
- inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i])
- inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i])
- inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i])
- # Intersection area
- inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum(
- inter_rect_y2 - inter_rect_y1, 0)
- # Union Area
- b1_area = np.repeat(
- ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1)
- b2_area = np.repeat(
- ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0)
- ious = inter_area / (b1_area + b2_area - inter_area + eps)
- return ious
|