| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import os.path as osp
- import cv2
- import numpy as np
- import yaml
- import paddlex
- import paddle.fluid as fluid
- class Predictor:
- def __init__(self,
- model_dir,
- use_gpu=True,
- gpu_id=0,
- use_mkl=False,
- use_trt=False,
- use_glog=False,
- memory_optimize=True):
- """ 创建Paddle Predictor
- Args:
- model_dir: 模型路径(必须是导出的部署或量化模型)
- use_gpu: 是否使用gpu,默认True
- gpu_id: 使用gpu的id,默认0
- use_mkl: 是否使用mkldnn计算库,CPU情况下使用,默认False
- use_trt: 是否使用TensorRT,默认False
- use_glog: 是否启用glog日志, 默认False
- memory_optimize: 是否启动内存优化,默认True
- """
- if not osp.isdir(model_dir):
- raise Exception("[ERROR] Path {} not exist.".format(model_dir))
- if not osp.exists(osp.join(model_dir, "model.yml")):
- raise Exception("There's not model.yml in {}".format(model_dir))
- with open(osp.join(model_dir, "model.yml")) as f:
- self.info = yaml.load(f.read(), Loader=yaml.Loader)
- self.status = self.info['status']
- if self.status != "Quant" and self.status != "Infer":
- raise Exception("[ERROR] Only quantized model or exported "
- "inference model is supported.")
- self.model_dir = model_dir
- self.model_type = self.info['_Attributes']['model_type']
- self.model_name = self.info['Model']
- self.num_classes = self.info['_Attributes']['num_classes']
- self.labels = self.info['_Attributes']['labels']
- if self.info['Model'] == 'MaskRCNN':
- if self.info['_init_params']['with_fpn']:
- self.mask_head_resolution = 28
- else:
- self.mask_head_resolution = 14
- transforms_mode = self.info.get('TransformsMode', 'RGB')
- if transforms_mode == 'RGB':
- to_rgb = True
- else:
- to_rgb = False
- self.transforms = self.build_transforms(self.info['Transforms'],
- to_rgb)
- self.predictor = self.create_predictor(
- use_gpu, gpu_id, use_mkl, use_trt, use_glog, memory_optimize)
- def create_predictor(self,
- use_gpu=True,
- gpu_id=0,
- use_mkl=False,
- use_trt=False,
- use_glog=False,
- memory_optimize=True):
- config = fluid.core.AnalysisConfig(
- os.path.join(self.model_dir, '__model__'),
- os.path.join(self.model_dir, '__params__'))
- if use_gpu:
- # 设置GPU初始显存(单位M)和Device ID
- config.enable_use_gpu(100, gpu_id)
- else:
- config.disable_gpu()
- if use_mkl:
- config.enable_mkldnn()
- if use_glog:
- config.enable_glog_info()
- else:
- config.disable_glog_info()
- if memory_optimize:
- config.enable_memory_optim()
- else:
- config.diable_memory_optim()
- # 开启计算图分析优化,包括OP融合等
- config.switch_ir_optim(True)
- # 关闭feed和fetch OP使用,使用ZeroCopy接口必须设置此项
- config.switch_use_feed_fetch_ops(False)
- predictor = fluid.core.create_paddle_predictor(config)
- return predictor
- def build_transforms(self, transforms_info, to_rgb=True):
- if self.model_type == "classifier":
- from paddlex.cls import transforms
- elif self.model_type == "detector":
- from paddlex.det import transforms
- elif self.model_type == "segmenter":
- from paddlex.seg import transforms
- op_list = list()
- for op_info in transforms_info:
- op_name = list(op_info.keys())[0]
- op_attr = op_info[op_name]
- if not hasattr(transforms, op_name):
- raise Exception(
- "There's no operator named '{}' in transforms of {}".
- format(op_name, self.model_type))
- op_list.append(getattr(transforms, op_name)(**op_attr))
- eval_transforms = transforms.Compose(op_list)
- if hasattr(eval_transforms, 'to_rgb'):
- eval_transforms.to_rgb = to_rgb
- self.arrange_transforms(eval_transforms)
- return eval_transforms
- def arrange_transforms(self, transforms):
- if self.model_type == 'classifier':
- arrange_transform = paddlex.cls.transforms.ArrangeClassifier
- elif self.model_type == 'segmenter':
- arrange_transform = paddlex.seg.transforms.ArrangeSegmenter
- elif self.model_type == 'detector':
- arrange_name = 'Arrange{}'.format(self.model_name)
- arrange_transform = getattr(paddlex.det.transforms, arrange_name)
- else:
- raise Exception("Unrecognized model type: {}".format(
- self.model_type))
- if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
- transforms.transforms[-1] = arrange_transform(mode='test')
- else:
- transforms.transforms.append(arrange_transform(mode='test'))
- def preprocess(self, image):
- """ 对图像做预处理
- Args:
- image(str|np.ndarray): 图片路径或np.ndarray,如为后者,要求是BGR格式
- """
- res = dict()
- if self.model_type == "classifier":
- im, = self.transforms(image)
- im = np.expand_dims(im, axis=0).copy()
- res['image'] = im
- elif self.model_type == "detector":
- if self.model_name == "YOLOv3":
- im, im_shape = self.transforms(image)
- im = np.expand_dims(im, axis=0).copy()
- im_shape = np.expand_dims(im_shape, axis=0).copy()
- res['image'] = im
- res['im_size'] = im_shape
- if self.model_name.count('RCNN') > 0:
- im, im_resize_info, im_shape = self.transforms(image)
- im = np.expand_dims(im, axis=0).copy()
- im_resize_info = np.expand_dims(im_resize_info, axis=0).copy()
- im_shape = np.expand_dims(im_shape, axis=0).copy()
- res['image'] = im
- res['im_info'] = im_resize_info
- res['im_shape'] = im_shape
- elif self.model_type == "segmenter":
- im, im_info = self.transforms(image)
- im = np.expand_dims(im, axis=0).copy()
- res['image'] = im
- res['im_info'] = im_info
- return res
- def raw_predict(self, inputs):
- """ 接受预处理过后的数据进行预测
- Args:
- inputs(tuple): 预处理过后的数据
- """
- for k, v in inputs.items():
- try:
- tensor = self.predictor.get_input_tensor(k)
- except:
- continue
- tensor.copy_from_cpu(v)
- self.predictor.zero_copy_run()
- output_names = self.predictor.get_output_names()
- output_results = list()
- for name in output_names:
- output_tensor = self.predictor.get_output_tensor(name)
- output_results.append(output_tensor.copy_to_cpu())
- return output_results
- def classifier_postprocess(self, preds, topk=1):
- """ 对分类模型的预测结果做后处理
- """
- true_topk = min(self.num_classes, topk)
- pred_label = np.argsort(preds[0][0])[::-1][:true_topk]
- result = [{
- 'category_id': l,
- 'category': self.labels[l],
- 'score': preds[0][0, l],
- } for l in pred_label]
- return result
- def segmenter_postprocess(self, preds, preprocessed_inputs):
- """ 对语义分割结果做后处理
- """
- label_map = np.squeeze(preds[0]).astype('uint8')
- score_map = np.squeeze(preds[1])
- score_map = np.transpose(score_map, (1, 2, 0))
- im_info = preprocessed_inputs['im_info']
- for info in im_info[::-1]:
- if info[0] == 'resize':
- w, h = info[1][1], info[1][0]
- label_map = cv2.resize(label_map, (w, h), cv2.INTER_NEAREST)
- score_map = cv2.resize(score_map, (w, h), cv2.INTER_LINEAR)
- elif info[0] == 'padding':
- w, h = info[1][1], info[1][0]
- label_map = label_map[0:h, 0:w]
- score_map = score_map[0:h, 0:w, :]
- else:
- raise Exception("Unexpected info '{}' in im_info".format(info[
- 0]))
- return {'label_map': label_map, 'score_map': score_map}
- def detector_postprocess(self, preds, preprocessed_inputs):
- """ 对目标检测和实例分割结果做后处理
- """
- bboxes = {'bbox': (np.array(preds[0]), [[len(preds[0])]])}
- bboxes['im_id'] = (np.array([[0]]).astype('int32'), [])
- clsid2catid = dict({i: i for i in range(self.num_classes)})
- xywh_results = paddlex.cv.models.utils.detection_eval.bbox2out(
- [bboxes], clsid2catid)
- results = list()
- for xywh_res in xywh_results:
- del xywh_res['image_id']
- xywh_res['category'] = self.labels[xywh_res['category_id']]
- results.append(xywh_res)
- if len(preds) > 1:
- im_shape = preprocessed_inputs['im_shape']
- bboxes['im_shape'] = (im_shape, [])
- bboxes['mask'] = (np.array(preds[1]), [[len(preds[1])]])
- segm_results = paddlex.cv.models.utils.detection_eval.mask2out(
- [bboxes], clsid2catid, self.mask_head_resolution)
- import pycocotools.mask as mask_util
- for i in range(len(results)):
- results[i]['mask'] = mask_util.decode(segm_results[i][
- 'segmentation'])
- return results
- def predict(self, image, topk=1, threshold=0.5):
- """ 图片预测
- Args:
- image(str|np.ndarray): 图片路径或np.ndarray格式,如果后者,要求为BGR输入格式
- topk(int): 分类预测时使用,表示预测前topk的结果
- """
- preprocessed_input = self.preprocess(image)
- model_pred = self.raw_predict(preprocessed_input)
- if self.model_type == "classifier":
- results = self.classifier_postprocess(model_pred, topk)
- elif self.model_type == "detector":
- results = self.detector_postprocess(model_pred, preprocessed_input)
- elif self.model_type == "segmenter":
- results = self.segmenter_postprocess(model_pred,
- preprocessed_input)
- return results
|