| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import List, Union
- import numpy as np
- from ....modules.text_detection.model_list import MODELS
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ..base import BasePredictor
- from ..common import ToBatch, ToCHWImage
- from .processors import DBPostProcess, DetResizeForTest, NormalizeImage
- from .result import TextDetResult
- class TextDetPredictor(BasePredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(
- self,
- limit_side_len: Union[int, None] = None,
- limit_type: Union[str, None] = None,
- thresh: Union[float, None] = None,
- box_thresh: Union[float, None] = None,
- unclip_ratio: Union[float, None] = None,
- input_shape=None,
- max_side_limit: int = 4000,
- *args,
- **kwargs
- ):
- super().__init__(*args, **kwargs)
- self.limit_side_len = limit_side_len
- self.limit_type = limit_type
- self.thresh = thresh
- self.box_thresh = box_thresh
- self.unclip_ratio = unclip_ratio
- self.input_shape = input_shape
- self.max_side_limit = max_side_limit
- self.pre_tfs, self.infer, self.post_op = self._build()
- def _build_batch_sampler(self):
- return ImageBatchSampler()
- def _get_result_class(self):
- return TextDetResult
- def _build(self):
- pre_tfs = {"Read": ReadImage(format="RGB")}
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- name, op = func(self, **args) if args else func(self)
- if op:
- pre_tfs[name] = op
- pre_tfs["ToBatch"] = ToBatch()
- infer = self.create_static_infer()
- post_op = self.build_postprocess(**self.config["PostProcess"])
- return pre_tfs, infer, post_op
- def process(
- self,
- batch_data: List[Union[str, np.ndarray]],
- limit_side_len: Union[int, None] = None,
- limit_type: Union[str, None] = None,
- thresh: Union[float, None] = None,
- box_thresh: Union[float, None] = None,
- unclip_ratio: Union[float, None] = None,
- max_side_limit: Union[int, None] = None,
- ):
- batch_raw_imgs = self.pre_tfs["Read"](imgs=batch_data.instances)
- batch_imgs, batch_shapes = self.pre_tfs["Resize"](
- imgs=batch_raw_imgs,
- limit_side_len=limit_side_len or self.limit_side_len,
- limit_type=limit_type or self.limit_type,
- max_side_limit=(
- max_side_limit if max_side_limit is not None else self.max_side_limit
- ),
- )
- batch_imgs = self.pre_tfs["Normalize"](imgs=batch_imgs)
- batch_imgs = self.pre_tfs["ToCHW"](imgs=batch_imgs)
- x = self.pre_tfs["ToBatch"](imgs=batch_imgs)
- batch_preds = self.infer(x=x)
- polys, scores = self.post_op(
- batch_preds,
- batch_shapes,
- thresh=thresh or self.thresh,
- box_thresh=box_thresh or self.box_thresh,
- unclip_ratio=unclip_ratio or self.unclip_ratio,
- )
- return {
- "input_path": batch_data.input_paths,
- "page_index": batch_data.page_indexes,
- "input_img": batch_raw_imgs,
- "dt_polys": polys,
- "dt_scores": scores,
- }
- @register("DecodeImage")
- def build_readimg(self, channel_first, img_mode):
- assert channel_first == False
- return "Read", ReadImage(format=img_mode)
- @register("DetResizeForTest")
- def build_resize(
- self,
- limit_side_len: Union[int, None] = None,
- limit_type: Union[str, None] = None,
- **kwargs
- ):
- # TODO: align to PaddleOCR
- if self.model_name in (
- "PP-OCRv5_server_det",
- "PP-OCRv5_mobile_det",
- "PP-OCRv4_server_det",
- "PP-OCRv4_mobile_det",
- "PP-OCRv3_server_det",
- "PP-OCRv3_mobile_det",
- ):
- limit_side_len = self.limit_side_len or kwargs.get("resize_long", 960)
- limit_type = self.limit_type or kwargs.get("limit_type", "max")
- else:
- limit_side_len = self.limit_side_len or kwargs.get("resize_long", 736)
- limit_type = self.limit_type or kwargs.get("limit_type", "min")
- return "Resize", DetResizeForTest(
- limit_side_len=limit_side_len,
- limit_type=limit_type,
- input_shape=self.input_shape,
- **kwargs
- )
- @register("NormalizeImage")
- def build_normalize(
- self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- scale=1 / 255,
- order="",
- ):
- return "Normalize", NormalizeImage(mean=mean, std=std, scale=scale, order=order)
- @register("ToCHWImage")
- def build_to_chw(self):
- return "ToCHW", ToCHWImage()
- def build_postprocess(self, **kwargs):
- if kwargs.get("name") == "DBPostProcess":
- return DBPostProcess(
- thresh=self.thresh or kwargs.get("thresh", 0.3),
- box_thresh=self.box_thresh or kwargs.get("box_thresh", 0.6),
- unclip_ratio=self.unclip_ratio or kwargs.get("unclip_ratio", 2.0),
- max_candidates=kwargs.get("max_candidates", 1000),
- use_dilation=kwargs.get("use_dilation", False),
- score_mode=kwargs.get("score_mode", "fast"),
- box_type=kwargs.get("box_type", "quad"),
- )
- else:
- raise Exception()
- @register("DetLabelEncode")
- def foo(self, *args, **kwargs):
- return None, None
- @register("KeepKeys")
- def foo(self, *args, **kwargs):
- return None, None
|