pipeline.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List, Tuple
  15. import numpy as np
  16. from ..base import BasePipeline
  17. from .utils import get_sub_regions_ocr_res, sorted_layout_boxes
  18. from ..components import CropByBoxes
  19. from .result import LayoutParsingResult
  20. from ....utils import logging
  21. from ...utils.pp_option import PaddlePredictorOption
  22. from ...utils.hpi import HPIConfig
  23. from ...common.reader import ReadImage
  24. from ...common.batch_sampler import ImageBatchSampler
  25. from ..ocr.result import OCRResult
  26. from ...models.object_detection.result import DetResult
  27. class LayoutParsingPipeline(BasePipeline):
  28. """Layout Parsing Pipeline"""
  29. entities = ["layout_parsing"]
  30. def __init__(
  31. self,
  32. config: Dict,
  33. device: str = None,
  34. pp_option: PaddlePredictorOption = None,
  35. use_hpip: bool = False,
  36. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  37. ) -> None:
  38. """Initializes the layout parsing pipeline.
  39. Args:
  40. config (Dict): Configuration dictionary containing various settings.
  41. device (str, optional): Device to run the predictions on. Defaults to None.
  42. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  43. use_hpip (bool, optional): Whether to use the high-performance
  44. inference plugin (HPIP) by default. Defaults to False.
  45. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  46. The default high-performance inference configuration dictionary.
  47. Defaults to None.
  48. """
  49. super().__init__(
  50. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  51. )
  52. self.inintial_predictor(config)
  53. self.batch_sampler = ImageBatchSampler(batch_size=1)
  54. self.img_reader = ReadImage(format="BGR")
  55. self._crop_by_boxes = CropByBoxes()
  56. def inintial_predictor(self, config: Dict) -> None:
  57. """Initializes the predictor based on the provided configuration.
  58. Args:
  59. config (Dict): A dictionary containing the configuration for the predictor.
  60. Returns:
  61. None
  62. """
  63. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  64. self.use_general_ocr = config.get("use_general_ocr", True)
  65. self.use_table_recognition = config.get("use_table_recognition", True)
  66. self.use_seal_recognition = config.get("use_seal_recognition", True)
  67. self.use_formula_recognition = config.get("use_formula_recognition", True)
  68. if self.use_doc_preprocessor:
  69. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  70. "DocPreprocessor",
  71. {
  72. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  73. },
  74. )
  75. self.doc_preprocessor_pipeline = self.create_pipeline(
  76. doc_preprocessor_config
  77. )
  78. layout_det_config = config.get("SubModules", {}).get(
  79. "LayoutDetection",
  80. {"model_config_error": "config error for layout_det_model!"},
  81. )
  82. layout_kwargs = {}
  83. if (threshold := layout_det_config.get("threshold", None)) is not None:
  84. layout_kwargs["threshold"] = threshold
  85. if (layout_nms := layout_det_config.get("layout_nms", None)) is not None:
  86. layout_kwargs["layout_nms"] = layout_nms
  87. if (
  88. layout_unclip_ratio := layout_det_config.get("layout_unclip_ratio", None)
  89. ) is not None:
  90. layout_kwargs["layout_unclip_ratio"] = layout_unclip_ratio
  91. if (
  92. layout_merge_bboxes_mode := layout_det_config.get(
  93. "layout_merge_bboxes_mode", None
  94. )
  95. ) is not None:
  96. layout_kwargs["layout_merge_bboxes_mode"] = layout_merge_bboxes_mode
  97. self.layout_det_model = self.create_model(layout_det_config, **layout_kwargs)
  98. if self.use_general_ocr or self.use_table_recognition:
  99. general_ocr_config = config.get("SubPipelines", {}).get(
  100. "GeneralOCR",
  101. {"pipeline_config_error": "config error for general_ocr_pipeline!"},
  102. )
  103. self.general_ocr_pipeline = self.create_pipeline(general_ocr_config)
  104. if self.use_seal_recognition:
  105. seal_recognition_config = config.get("SubPipelines", {}).get(
  106. "SealRecognition",
  107. {
  108. "pipeline_config_error": "config error for seal_recognition_pipeline!"
  109. },
  110. )
  111. self.seal_recognition_pipeline = self.create_pipeline(
  112. seal_recognition_config
  113. )
  114. if self.use_table_recognition:
  115. table_recognition_config = config.get("SubPipelines", {}).get(
  116. "TableRecognition",
  117. {
  118. "pipeline_config_error": "config error for table_recognition_pipeline!"
  119. },
  120. )
  121. self.table_recognition_pipeline = self.create_pipeline(
  122. table_recognition_config
  123. )
  124. if self.use_formula_recognition:
  125. formula_recognition_config = config.get("SubPipelines", {}).get(
  126. "FormulaRecognition",
  127. {
  128. "pipeline_config_error": "config error for formula_recognition_pipeline!"
  129. },
  130. )
  131. self.formula_recognition_pipeline = self.create_pipeline(
  132. formula_recognition_config
  133. )
  134. return
  135. def get_layout_parsing_res(
  136. self,
  137. image: list,
  138. layout_det_res: DetResult,
  139. overall_ocr_res: OCRResult,
  140. table_res_list: list,
  141. seal_res_list: list,
  142. formula_res_list: list,
  143. text_det_limit_side_len: Optional[int] = None,
  144. text_det_limit_type: Optional[str] = None,
  145. text_det_thresh: Optional[float] = None,
  146. text_det_box_thresh: Optional[float] = None,
  147. text_det_unclip_ratio: Optional[float] = None,
  148. text_rec_score_thresh: Optional[float] = None,
  149. ) -> list:
  150. """
  151. Retrieves the layout parsing result based on the layout detection result, OCR result, and other recognition results.
  152. Args:
  153. image (list): The input image.
  154. layout_det_res (DetResult): The detection result containing the layout information of the document.
  155. overall_ocr_res (OCRResult): The overall OCR result containing text information.
  156. table_res_list (list): A list of table recognition results.
  157. seal_res_list (list): A list of seal recognition results.
  158. formula_res_list (list): A list of formula recognition results.
  159. text_det_limit_side_len (Optional[int], optional): The maximum side length of the text detection region. Defaults to None.
  160. text_det_limit_type (Optional[str], optional): The type of limit for the text detection region. Defaults to None.
  161. text_det_thresh (Optional[float], optional): The confidence threshold for text detection. Defaults to None.
  162. text_det_box_thresh (Optional[float], optional): The confidence threshold for text detection bounding boxes. Defaults to None
  163. text_det_unclip_ratio (Optional[float], optional): The unclip ratio for text detection. Defaults to None.
  164. text_rec_score_thresh (Optional[float], optional): The score threshold for text recognition. Defaults to None.
  165. Returns:
  166. list: A list of dictionaries representing the layout parsing result.
  167. """
  168. layout_parsing_res = []
  169. matched_ocr_dict = {}
  170. formula_index = 0
  171. table_index = 0
  172. seal_index = 0
  173. image = np.array(image)
  174. object_boxes = []
  175. for object_box_idx, box_info in enumerate(layout_det_res["boxes"]):
  176. single_box_res = {}
  177. box = box_info["coordinate"]
  178. label = box_info["label"].lower()
  179. single_box_res["block_bbox"] = box
  180. single_box_res["block_label"] = label
  181. single_box_res["block_content"] = ""
  182. object_boxes.append(box)
  183. if label == "formula":
  184. if len(formula_res_list) > 0:
  185. assert (
  186. len(formula_res_list) > formula_index
  187. ), f"The number of \
  188. formula regions of layout parsing pipeline \
  189. and formula recognition pipeline are different!"
  190. single_box_res["block_content"] = formula_res_list[formula_index][
  191. "rec_formula"
  192. ]
  193. formula_index += 1
  194. elif label == "table":
  195. if len(table_res_list) > 0:
  196. assert (
  197. len(table_res_list) > table_index
  198. ), f"The number of \
  199. table regions of layout parsing pipeline \
  200. and table recognition pipeline are different!"
  201. single_box_res["block_content"] = table_res_list[table_index][
  202. "pred_html"
  203. ]
  204. table_index += 1
  205. elif label == "seal":
  206. if len(seal_res_list) > 0:
  207. assert (
  208. len(seal_res_list) > seal_index
  209. ), f"The number of \
  210. seal regions of layout parsing pipeline \
  211. and seal recognition pipeline are different!"
  212. single_box_res["block_content"] = ", ".join(
  213. seal_res_list[seal_index]["rec_texts"]
  214. )
  215. seal_index += 1
  216. else:
  217. ocr_res_in_box, matched_idxs = get_sub_regions_ocr_res(
  218. overall_ocr_res, [box], return_match_idx=True
  219. )
  220. for matched_idx in matched_idxs:
  221. if matched_ocr_dict.get(matched_idx, None) is None:
  222. matched_ocr_dict[matched_idx] = [object_box_idx]
  223. else:
  224. matched_ocr_dict[matched_idx].append(object_box_idx)
  225. single_box_res["block_content"] = "\n".join(ocr_res_in_box["rec_texts"])
  226. layout_parsing_res.append(single_box_res)
  227. for layout_box_ids in matched_ocr_dict.values():
  228. # one ocr is matched to multiple layout boxes, split the text into multiple lines
  229. if len(layout_box_ids) > 1:
  230. for idx in layout_box_ids:
  231. wht_im = np.ones(image.shape, dtype=image.dtype) * 255
  232. box = layout_parsing_res[idx]["block_bbox"]
  233. x1, y1, x2, y2 = [int(i) for i in box]
  234. wht_im[y1:y2, x1:x2, :] = image[y1:y2, x1:x2, :]
  235. sub_ocr_res = next(
  236. self.general_ocr_pipeline(
  237. wht_im,
  238. text_det_limit_side_len=text_det_limit_side_len,
  239. text_det_limit_type=text_det_limit_type,
  240. text_det_thresh=text_det_thresh,
  241. text_det_box_thresh=text_det_box_thresh,
  242. text_det_unclip_ratio=text_det_unclip_ratio,
  243. text_rec_score_thresh=text_rec_score_thresh,
  244. )
  245. )
  246. layout_parsing_res[idx]["block_content"] = "\n".join(
  247. sub_ocr_res["rec_texts"]
  248. )
  249. ocr_without_layout_boxes = get_sub_regions_ocr_res(
  250. overall_ocr_res, object_boxes, flag_within=False
  251. )
  252. for ocr_rec_box, ocr_rec_text in zip(
  253. ocr_without_layout_boxes["rec_boxes"], ocr_without_layout_boxes["rec_texts"]
  254. ):
  255. single_box_res = {}
  256. single_box_res["block_bbox"] = ocr_rec_box
  257. single_box_res["block_label"] = "other_text"
  258. single_box_res["block_content"] = ocr_rec_text
  259. layout_parsing_res.append(single_box_res)
  260. layout_parsing_res = sorted_layout_boxes(layout_parsing_res, w=image.shape[1])
  261. return layout_parsing_res
  262. def check_model_settings_valid(self, input_params: Dict) -> bool:
  263. """
  264. Check if the input parameters are valid based on the initialized models.
  265. Args:
  266. input_params (Dict): A dictionary containing input parameters.
  267. Returns:
  268. bool: True if all required models are initialized according to input parameters, False otherwise.
  269. """
  270. if input_params["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  271. logging.error(
  272. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  273. )
  274. return False
  275. if input_params["use_general_ocr"] and not self.use_general_ocr:
  276. logging.error(
  277. "Set use_general_ocr, but the models for general OCR are not initialized."
  278. )
  279. return False
  280. if input_params["use_seal_recognition"] and not self.use_seal_recognition:
  281. logging.error(
  282. "Set use_seal_recognition, but the models for seal recognition are not initialized."
  283. )
  284. return False
  285. if input_params["use_table_recognition"] and not self.use_table_recognition:
  286. logging.error(
  287. "Set use_table_recognition, but the models for table recognition are not initialized."
  288. )
  289. return False
  290. return True
  291. def get_model_settings(
  292. self,
  293. use_doc_orientation_classify: Optional[bool],
  294. use_doc_unwarping: Optional[bool],
  295. use_general_ocr: Optional[bool],
  296. use_seal_recognition: Optional[bool],
  297. use_table_recognition: Optional[bool],
  298. use_formula_recognition: Optional[bool],
  299. ) -> dict:
  300. """
  301. Get the model settings based on the provided parameters or default values.
  302. Args:
  303. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  304. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  305. use_general_ocr (Optional[bool]): Whether to use general OCR.
  306. use_seal_recognition (Optional[bool]): Whether to use seal recognition.
  307. use_table_recognition (Optional[bool]): Whether to use table recognition.
  308. Returns:
  309. dict: A dictionary containing the model settings.
  310. """
  311. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  312. use_doc_preprocessor = self.use_doc_preprocessor
  313. else:
  314. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  315. use_doc_preprocessor = True
  316. else:
  317. use_doc_preprocessor = False
  318. if use_general_ocr is None:
  319. use_general_ocr = self.use_general_ocr
  320. if use_seal_recognition is None:
  321. use_seal_recognition = self.use_seal_recognition
  322. if use_table_recognition is None:
  323. use_table_recognition = self.use_table_recognition
  324. if use_formula_recognition is None:
  325. use_formula_recognition = self.use_formula_recognition
  326. return dict(
  327. use_doc_preprocessor=use_doc_preprocessor,
  328. use_general_ocr=use_general_ocr,
  329. use_seal_recognition=use_seal_recognition,
  330. use_table_recognition=use_table_recognition,
  331. use_formula_recognition=use_formula_recognition,
  332. )
  333. def predict(
  334. self,
  335. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  336. use_doc_orientation_classify: Optional[bool] = None,
  337. use_doc_unwarping: Optional[bool] = None,
  338. use_textline_orientation: Optional[bool] = None,
  339. use_general_ocr: Optional[bool] = None,
  340. use_seal_recognition: Optional[bool] = None,
  341. use_table_recognition: Optional[bool] = None,
  342. use_formula_recognition: Optional[bool] = None,
  343. layout_threshold: Optional[Union[float, dict]] = None,
  344. layout_nms: Optional[bool] = None,
  345. layout_unclip_ratio: Optional[Union[float, Tuple[float, float], dict]] = None,
  346. layout_merge_bboxes_mode: Optional[str] = None,
  347. text_det_limit_side_len: Optional[int] = None,
  348. text_det_limit_type: Optional[str] = None,
  349. text_det_thresh: Optional[float] = None,
  350. text_det_box_thresh: Optional[float] = None,
  351. text_det_unclip_ratio: Optional[float] = None,
  352. text_rec_score_thresh: Optional[float] = None,
  353. seal_det_limit_side_len: Optional[int] = None,
  354. seal_det_limit_type: Optional[str] = None,
  355. seal_det_thresh: Optional[float] = None,
  356. seal_det_box_thresh: Optional[float] = None,
  357. seal_det_unclip_ratio: Optional[float] = None,
  358. seal_rec_score_thresh: Optional[float] = None,
  359. **kwargs,
  360. ) -> LayoutParsingResult:
  361. """
  362. This function predicts the layout parsing result for the given input.
  363. Args:
  364. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or pdf(s) to be processed.
  365. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  366. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  367. use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
  368. use_general_ocr (Optional[bool]): Whether to use general OCR.
  369. use_seal_recognition (Optional[bool]): Whether to use seal recognition.
  370. use_table_recognition (Optional[bool]): Whether to use table recognition.
  371. use_formula_recognition (Optional[bool]): Whether to use formula recognition.
  372. layout_threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  373. layout_nms (bool, optional): Whether to use layout-aware NMS. Defaults to False.
  374. layout_unclip_ratio (Optional[Union[float, Tuple[float, float]]], optional): The ratio of unclipping the bounding box.
  375. Defaults to None.
  376. If it's a single number, then both width and height are used.
  377. If it's a tuple of two numbers, then they are used separately for width and height respectively.
  378. If it's None, then no unclipping will be performed.
  379. layout_merge_bboxes_mode (Optional[str], optional): The mode for merging bounding boxes. Defaults to None.
  380. text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
  381. text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
  382. text_det_thresh (Optional[float]): Threshold for text detection.
  383. text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
  384. text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
  385. text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
  386. seal_det_limit_side_len (Optional[int]): Maximum side length for seal detection.
  387. seal_det_limit_type (Optional[str]): Type of limit to apply for seal detection.
  388. seal_det_thresh (Optional[float]): Threshold for seal detection.
  389. seal_det_box_thresh (Optional[float]): Threshold for seal detection boxes.
  390. seal_det_unclip_ratio (Optional[float]): Ratio for unclipping seal detection boxes.
  391. seal_rec_score_thresh (Optional[float]): Score threshold for seal recognition.
  392. **kwargs: Additional keyword arguments.
  393. Returns:
  394. LayoutParsingResult: The predicted layout parsing result.
  395. """
  396. model_settings = self.get_model_settings(
  397. use_doc_orientation_classify,
  398. use_doc_unwarping,
  399. use_general_ocr,
  400. use_seal_recognition,
  401. use_table_recognition,
  402. use_formula_recognition,
  403. )
  404. if not self.check_model_settings_valid(model_settings):
  405. yield {"error": "the input params for model settings are invalid!"}
  406. for img_id, batch_data in enumerate(self.batch_sampler(input)):
  407. image_array = self.img_reader(batch_data.instances)[0]
  408. if model_settings["use_doc_preprocessor"]:
  409. doc_preprocessor_res = next(
  410. self.doc_preprocessor_pipeline(
  411. image_array,
  412. use_doc_orientation_classify=use_doc_orientation_classify,
  413. use_doc_unwarping=use_doc_unwarping,
  414. )
  415. )
  416. else:
  417. doc_preprocessor_res = {"output_img": image_array}
  418. doc_preprocessor_image = doc_preprocessor_res["output_img"]
  419. layout_det_res = next(
  420. self.layout_det_model(
  421. doc_preprocessor_image,
  422. threshold=layout_threshold,
  423. layout_nms=layout_nms,
  424. layout_unclip_ratio=layout_unclip_ratio,
  425. layout_merge_bboxes_mode=layout_merge_bboxes_mode,
  426. )
  427. )
  428. if (
  429. model_settings["use_general_ocr"]
  430. or model_settings["use_table_recognition"]
  431. ):
  432. overall_ocr_res = next(
  433. self.general_ocr_pipeline(
  434. doc_preprocessor_image,
  435. use_textline_orientation=use_textline_orientation,
  436. text_det_limit_side_len=text_det_limit_side_len,
  437. text_det_limit_type=text_det_limit_type,
  438. text_det_thresh=text_det_thresh,
  439. text_det_box_thresh=text_det_box_thresh,
  440. text_det_unclip_ratio=text_det_unclip_ratio,
  441. text_rec_score_thresh=text_rec_score_thresh,
  442. )
  443. )
  444. else:
  445. overall_ocr_res = {}
  446. if model_settings["use_table_recognition"]:
  447. table_res_all = next(
  448. self.table_recognition_pipeline(
  449. doc_preprocessor_image,
  450. use_doc_orientation_classify=False,
  451. use_doc_unwarping=False,
  452. use_layout_detection=False,
  453. use_ocr_model=False,
  454. overall_ocr_res=overall_ocr_res,
  455. layout_det_res=layout_det_res,
  456. )
  457. )
  458. table_res_list = table_res_all["table_res_list"]
  459. else:
  460. table_res_list = []
  461. if model_settings["use_seal_recognition"]:
  462. seal_res_all = next(
  463. self.seal_recognition_pipeline(
  464. doc_preprocessor_image,
  465. use_doc_orientation_classify=False,
  466. use_doc_unwarping=False,
  467. use_layout_detection=False,
  468. layout_det_res=layout_det_res,
  469. seal_det_limit_side_len=seal_det_limit_side_len,
  470. seal_det_limit_type=seal_det_limit_type,
  471. seal_det_thresh=seal_det_thresh,
  472. seal_det_box_thresh=seal_det_box_thresh,
  473. seal_det_unclip_ratio=seal_det_unclip_ratio,
  474. seal_rec_score_thresh=seal_rec_score_thresh,
  475. )
  476. )
  477. seal_res_list = seal_res_all["seal_res_list"]
  478. else:
  479. seal_res_list = []
  480. if model_settings["use_formula_recognition"]:
  481. formula_res_all = next(
  482. self.formula_recognition_pipeline(
  483. doc_preprocessor_image,
  484. use_layout_detection=False,
  485. use_doc_orientation_classify=False,
  486. use_doc_unwarping=False,
  487. layout_det_res=layout_det_res,
  488. )
  489. )
  490. formula_res_list = formula_res_all["formula_res_list"]
  491. else:
  492. formula_res_list = []
  493. parsing_res_list = self.get_layout_parsing_res(
  494. doc_preprocessor_image,
  495. layout_det_res=layout_det_res,
  496. overall_ocr_res=overall_ocr_res,
  497. table_res_list=table_res_list,
  498. seal_res_list=seal_res_list,
  499. formula_res_list=formula_res_list,
  500. text_det_limit_side_len=text_det_limit_side_len,
  501. text_det_limit_type=text_det_limit_type,
  502. text_det_thresh=text_det_thresh,
  503. text_det_box_thresh=text_det_box_thresh,
  504. text_det_unclip_ratio=text_det_unclip_ratio,
  505. text_rec_score_thresh=text_rec_score_thresh,
  506. )
  507. single_img_res = {
  508. "input_path": batch_data.input_paths[0],
  509. "page_index": batch_data.page_indexes[0],
  510. "doc_preprocessor_res": doc_preprocessor_res,
  511. "layout_det_res": layout_det_res,
  512. "overall_ocr_res": overall_ocr_res,
  513. "table_res_list": table_res_list,
  514. "seal_res_list": seal_res_list,
  515. "formula_res_list": formula_res_list,
  516. "parsing_res_list": parsing_res_list,
  517. "model_settings": model_settings,
  518. }
  519. yield LayoutParsingResult(single_img_res)