pipeline.py 3.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ...utils.hpi import HPIConfig
  18. from ..base import BasePipeline
  19. from ...models.object_detection.result import DetResult
  20. class OpenVocabularyDetectionPipeline(BasePipeline):
  21. """Open Vocabulary Detection Pipeline"""
  22. entities = "open_vocabulary_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  30. ) -> None:
  31. """
  32. Initializes the class with given configurations and options.
  33. Args:
  34. config (Dict): Configuration dictionary containing model and other parameters.
  35. device (str): The device to run the prediction on. Default is None.
  36. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  37. use_hpip (bool, optional): Whether to use the high-performance
  38. inference plugin (HPIP) by default. Defaults to False.
  39. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  40. The default high-performance inference configuration dictionary.
  41. Defaults to None.
  42. """
  43. super().__init__(
  44. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  45. )
  46. open_vocabulary_detection_model_config = config.get("SubModules", {}).get(
  47. "OpenVocabularyDetection",
  48. {"model_config_error": "config error for doc_ori_classify_model!"},
  49. )
  50. self.open_vocabulary_detection_model = self.create_model(
  51. open_vocabulary_detection_model_config
  52. )
  53. self.thresholds = open_vocabulary_detection_model_config["thresholds"]
  54. def predict(
  55. self,
  56. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  57. prompt: str,
  58. thresholds: Union[Dict[str, float], None] = None,
  59. **kwargs
  60. ) -> DetResult:
  61. """Predicts open vocabulary detection results for the given input.
  62. Args:
  63. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  64. prompt (str): The text prompt used to describe the objects.
  65. thresholds (dict | None): Threshold values for different models. If provided, these will override any default threshold values set during initialization. Default is None.
  66. **kwargs: Additional keyword arguments that can be passed to the function.
  67. Returns:
  68. DetResult: The predicted open vocabulary detection results.
  69. """
  70. yield from self.open_vocabulary_detection_model(
  71. input, prompt=prompt, thresholds=thresholds
  72. )