pipeline.py 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ...utils.hpi import HPIConfig
  18. from ..base import BasePipeline
  19. from ...models.object_detection.result import DetResult
  20. class RotatedObjectDetectionPipeline(BasePipeline):
  21. """Rotated Object Detection Pipeline"""
  22. entities = "rotated_object_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  30. ) -> None:
  31. """
  32. Initializes the class with given configurations and options.
  33. Args:
  34. config (Dict): Configuration dictionary containing model and other parameters.
  35. device (str): The device to run the prediction on. Default is None.
  36. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  37. use_hpip (bool, optional): Whether to use the high-performance
  38. inference plugin (HPIP) by default. Defaults to False.
  39. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  40. The default high-performance inference configuration dictionary.
  41. Defaults to None.
  42. """
  43. super().__init__(
  44. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  45. )
  46. rotated_object_detection_model_config = config["SubModules"][
  47. "RotatedObjectDetection"
  48. ]
  49. self.rotated_object_detection_model = self.create_model(
  50. rotated_object_detection_model_config
  51. )
  52. self.threshold = rotated_object_detection_model_config["threshold"]
  53. def predict(
  54. self,
  55. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  56. threshold: Union[None, Dict[int, float], float] = None,
  57. **kwargs
  58. ) -> DetResult:
  59. """Predicts rotated object detection results for the given input.
  60. Args:
  61. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  62. threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  63. If None, it will use the default threshold specified during initialization.
  64. If a dictionary is provided, it should have integer keys corresponding to the class IDs and float values
  65. representing the respective thresholds for each class.
  66. If a single float value is provided, it will be used as the threshold for all classes.
  67. **kwargs: Additional keyword arguments that can be passed to the function.
  68. Returns:
  69. DetResult: The predicted rotated object detection results.
  70. """
  71. yield from self.rotated_object_detection_model(input, threshold=threshold)