pipeline.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import pandas as pd
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ...utils.hpi import HPIConfig
  18. from ..base import BasePipeline
  19. from ...models.ts_anomaly_detection.result import TSAdResult
  20. class TSAnomalyDetPipeline(BasePipeline):
  21. """TSAnomalyDetPipeline Pipeline"""
  22. entities = "ts_anomaly_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  30. ) -> None:
  31. """Initializes the Time Series ad pipeline.
  32. Args:
  33. config (Dict): Configuration dictionary containing various settings.
  34. device (str, optional): Device to run the predictions on. Defaults to None.
  35. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  36. use_hpip (bool, optional): Whether to use the high-performance
  37. inference plugin (HPIP) by default. Defaults to False.
  38. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  39. The default high-performance inference configuration dictionary.
  40. Defaults to None.
  41. """
  42. super().__init__(
  43. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  44. )
  45. ts_ad_model_config = config["SubModules"]["TSAnomalyDetection"]
  46. self.ts_ad_model = self.create_model(ts_ad_model_config)
  47. def predict(
  48. self, input: Union[str, List[str], pd.DataFrame, List[pd.DataFrame]], **kwargs
  49. ) -> TSAdResult:
  50. """Predicts time series anomaly detection results for the given input.
  51. Args:
  52. input (Union[str, list[str], pd.DataFrame, list[pd.DataFrame]]): The input image(s) or path(s) to the images.
  53. **kwargs: Additional keyword arguments that can be passed to the function.
  54. Returns:
  55. TSAdResult: The predicted time series anomaly detection results.
  56. """
  57. yield from self.ts_ad_model(input)