pipeline.py 3.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ...utils.hpi import HPIConfig
  18. from ..base import BasePipeline
  19. from ...models.video_detection.result import DetVideoResult
  20. class VideoDetectionPipeline(BasePipeline):
  21. """Video detection Pipeline"""
  22. entities = "video_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  30. ) -> None:
  31. """
  32. Initializes the class with given configurations and options.
  33. Args:
  34. config (Dict): Configuration dictionary containing model and other parameters.
  35. device (str): The device to run the prediction on. Default is None.
  36. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  37. use_hpip (bool, optional): Whether to use the high-performance
  38. inference plugin (HPIP) by default. Defaults to False.
  39. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  40. The default high-performance inference configuration dictionary.
  41. Defaults to None.
  42. """
  43. super().__init__(
  44. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  45. )
  46. video_detection_model_config = config["SubModules"]["VideoDetection"]
  47. model_kwargs = {}
  48. if "nms_thresh" in video_detection_model_config:
  49. model_kwargs["nms_thresh"] = video_detection_model_config["nms_thresh"]
  50. if "score_thresh" in video_detection_model_config:
  51. model_kwargs["score_thresh"] = video_detection_model_config["score_thresh"]
  52. self.video_detection_model = self.create_model(
  53. video_detection_model_config, **model_kwargs
  54. )
  55. def predict(
  56. self,
  57. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  58. nms_thresh: float = 0.5,
  59. score_thresh: float = 0.4,
  60. **kwargs
  61. ) -> DetVideoResult:
  62. """Predicts video detection results for the given input.
  63. Args:
  64. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  65. **kwargs: Additional keyword arguments that can be passed to the function.
  66. Returns:
  67. DetVideoResult: The predicted video detection results.
  68. """
  69. yield from self.video_detection_model(
  70. input, nms_thresh=nms_thresh, score_thresh=score_thresh
  71. )