detector.cpp 3.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. #include <glog/logging.h>
  2. #include <omp.h>
  3. #include <algorithm>
  4. #include <chrono> // NOLINT
  5. #include <fstream>
  6. #include <iostream>
  7. #include <string>
  8. #include <vector>
  9. #include <utility>
  10. #include "include/paddlex/paddlex.h"
  11. #include "include/paddlex/visualize.h"
  12. using namespace std::chrono; // NOLINT
  13. DEFINE_string(model_dir, "", "Path of openvino model xml file");
  14. DEFINE_string(cfg_dir, "", "Path of PaddleX model yaml file");
  15. DEFINE_string(image, "", "Path of test image file");
  16. DEFINE_string(image_list, "", "Path of test image list file");
  17. DEFINE_string(device, "CPU", "Device name");
  18. DEFINE_string(save_dir, "", "Path to save visualized image");
  19. DEFINE_int32(batch_size, 1, "Batch size of infering");
  20. DEFINE_double(threshold,
  21. 0.5,
  22. "The minimum scores of target boxes which are shown");
  23. int main(int argc, char** argv) {
  24. google::ParseCommandLineFlags(&argc, &argv, true);
  25. if (FLAGS_model_dir == "") {
  26. std::cerr << "--model_dir need to be defined" << std::endl;
  27. return -1;
  28. }
  29. if (FLAGS_cfg_dir == "") {
  30. std::cerr << "--cfg_dir need to be defined" << std::endl;
  31. return -1;
  32. }
  33. if (FLAGS_image == "" & FLAGS_image_list == "") {
  34. std::cerr << "--image or --image_list need to be defined" << std::endl;
  35. return -1;
  36. }
  37. //
  38. PaddleX::Model model;
  39. model.Init(FLAGS_model_dir, FLAGS_cfg_dir, FLAGS_device);
  40. int imgs = 1;
  41. auto colormap = PaddleX::GenerateColorMap(model.labels.size());
  42. // 进行预测
  43. if (FLAGS_image_list != "") {
  44. std::ifstream inf(FLAGS_image_list);
  45. if(!inf){
  46. std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
  47. return -1;
  48. }
  49. std::string image_path;
  50. while (getline(inf, image_path)) {
  51. PaddleX::DetResult result;
  52. cv::Mat im = cv::imread(image_path, 1);
  53. model.predict(im, &result);
  54. if(FLAGS_save_dir != ""){
  55. cv::Mat vis_img =
  56. PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold);
  57. std::string save_path =
  58. PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
  59. cv::imwrite(save_path, vis_img);
  60. std::cout << "Visualized output saved as " << save_path << std::endl;
  61. }
  62. }
  63. }else {
  64. PaddleX::DetResult result;
  65. cv::Mat im = cv::imread(FLAGS_image, 1);
  66. model.predict(im, &result);
  67. for (int i = 0; i < result.boxes.size(); ++i) {
  68. std::cout << "image file: " << FLAGS_image << std::endl;
  69. std::cout << ", predict label: " << result.boxes[i].category
  70. << ", label_id:" << result.boxes[i].category_id
  71. << ", score: " << result.boxes[i].score
  72. << ", box(xmin, ymin, w, h):(" << result.boxes[i].coordinate[0]
  73. << ", " << result.boxes[i].coordinate[1] << ", "
  74. << result.boxes[i].coordinate[2] << ", "
  75. << result.boxes[i].coordinate[3] << ")" << std::endl;
  76. }
  77. if(FLAGS_save_dir != ""){
  78. // 可视化
  79. cv::Mat vis_img =
  80. PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold);
  81. std::string save_path =
  82. PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
  83. cv::imwrite(save_path, vis_img);
  84. result.clear();
  85. std::cout << "Visualized output saved as " << save_path << std::endl;
  86. }
  87. }
  88. return 0;
  89. }