| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- #include <glog/logging.h>
- #include <omp.h>
- #include <algorithm>
- #include <chrono> // NOLINT
- #include <fstream>
- #include <iostream>
- #include <string>
- #include <vector>
- #include <utility>
- #include "include/paddlex/paddlex.h"
- #include "include/paddlex/visualize.h"
- using namespace std::chrono; // NOLINT
- DEFINE_string(model_dir, "", "Path of openvino model xml file");
- DEFINE_string(cfg_dir, "", "Path of PaddleX model yaml file");
- DEFINE_string(image, "", "Path of test image file");
- DEFINE_string(image_list, "", "Path of test image list file");
- DEFINE_string(device, "CPU", "Device name");
- DEFINE_string(save_dir, "", "Path to save visualized image");
- DEFINE_int32(batch_size, 1, "Batch size of infering");
- DEFINE_double(threshold,
- 0.5,
- "The minimum scores of target boxes which are shown");
- int main(int argc, char** argv) {
- google::ParseCommandLineFlags(&argc, &argv, true);
- if (FLAGS_model_dir == "") {
- std::cerr << "--model_dir need to be defined" << std::endl;
- return -1;
- }
- if (FLAGS_cfg_dir == "") {
- std::cerr << "--cfg_dir need to be defined" << std::endl;
- return -1;
- }
- if (FLAGS_image == "" & FLAGS_image_list == "") {
- std::cerr << "--image or --image_list need to be defined" << std::endl;
- return -1;
- }
- //
- PaddleX::Model model;
- model.Init(FLAGS_model_dir, FLAGS_cfg_dir, FLAGS_device);
- int imgs = 1;
- auto colormap = PaddleX::GenerateColorMap(model.labels.size());
- // 进行预测
- if (FLAGS_image_list != "") {
- std::ifstream inf(FLAGS_image_list);
- if(!inf){
- std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
- return -1;
- }
- std::string image_path;
- while (getline(inf, image_path)) {
- PaddleX::DetResult result;
- cv::Mat im = cv::imread(image_path, 1);
- model.predict(im, &result);
- if(FLAGS_save_dir != ""){
- cv::Mat vis_img =
- PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold);
- std::string save_path =
- PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
- cv::imwrite(save_path, vis_img);
- std::cout << "Visualized output saved as " << save_path << std::endl;
- }
- }
- }else {
- PaddleX::DetResult result;
- cv::Mat im = cv::imread(FLAGS_image, 1);
- model.predict(im, &result);
- for (int i = 0; i < result.boxes.size(); ++i) {
- std::cout << "image file: " << FLAGS_image << std::endl;
- std::cout << ", predict label: " << result.boxes[i].category
- << ", label_id:" << result.boxes[i].category_id
- << ", score: " << result.boxes[i].score
- << ", box(xmin, ymin, w, h):(" << result.boxes[i].coordinate[0]
- << ", " << result.boxes[i].coordinate[1] << ", "
- << result.boxes[i].coordinate[2] << ", "
- << result.boxes[i].coordinate[3] << ")" << std::endl;
- }
- if(FLAGS_save_dir != ""){
- // 可视化
- cv::Mat vis_img =
- PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold);
- std::string save_path =
- PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
- cv::imwrite(save_path, vis_img);
- result.clear();
- std::cout << "Visualized output saved as " << save_path << std::endl;
- }
- }
- return 0;
- }
|