| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from abc import ABC, abstractmethod
- from typing import Any, Dict, Optional
- from ..predictors import create_predictor
- from ...utils.subclass_register import AutoRegisterABCMetaClass
- from ..predictors import create_predictor
- def create_pipeline(
- pipeline_name: str,
- model_list: list,
- model_dir_list: list,
- output: str,
- device: str,
- use_hpip: bool,
- hpi_params: Optional[Dict[str, Any]] = None,
- ) -> "BasePipeline":
- """build model evaluater
- Args:
- pipeline_name (str): the pipeline name, that is name of pipeline class
- Returns:
- BasePipeline: the pipeline, which is subclass of BasePipeline.
- """
- predictor_kwargs = {"use_hpip": use_hpip}
- if hpi_params is not None:
- predictor_kwargs["hpi_params"] = hpi_params
- pipeline = BasePipeline.get(pipeline_name)(
- output=output, device=device, predictor_kwargs=predictor_kwargs
- )
- pipeline.update_model(model_list, model_dir_list)
- pipeline.load_model()
- return pipeline
- class BasePipeline(ABC, metaclass=AutoRegisterABCMetaClass):
- """Base Pipeline"""
- __is_base = True
- def __init__(self, predictor_kwargs: Optional[Dict[str, Any]]) -> None:
- super().__init__()
- if predictor_kwargs is None:
- predictor_kwargs = {}
- self._predictor_kwargs = predictor_kwargs
- # alias the __call__() to predict()
- def __call__(self, *args, **kwargs):
- yield from self.predict(*args, **kwargs)
- def _create_predictor(self, *args, **kwargs):
- return create_predictor(*args, **kwargs, **self._predictor_kwargs)
|