semantic_segmentation.py 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.semantic_segmentation.model_list import MODELS
  17. from ..components import *
  18. from ..results import SegResult
  19. from ..utils.process_hook import batchable_method
  20. from .base import BasicPredictor
  21. class SegPredictor(BasicPredictor):
  22. entities = MODELS
  23. _FUNC_MAP = {}
  24. register = FuncRegister(_FUNC_MAP)
  25. def _check_args(self, kwargs):
  26. assert set(kwargs.keys()).issubset(set(["batch_size"]))
  27. return kwargs
  28. def _build_components(self):
  29. ops = {}
  30. ops["ReadImage"] = ReadImage(
  31. batch_size=self.kwargs.get("batch_size", 1), format="RGB"
  32. )
  33. ops["ToCHWImage"] = ToCHWImage()
  34. for cfg in self.config["Deploy"]["transforms"]:
  35. tf_key = cfg["type"]
  36. func = self._FUNC_MAP.get(tf_key)
  37. cfg.pop("type")
  38. args = cfg
  39. op = func(self, **args) if args else func(self)
  40. ops[tf_key] = op
  41. predictor = ImagePredictor(
  42. model_dir=self.model_dir,
  43. model_prefix=self.MODEL_FILE_PREFIX,
  44. option=self.pp_option,
  45. )
  46. ops["predictor"] = predictor
  47. return ops
  48. @register("Resize")
  49. def build_resize(
  50. self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR"
  51. ):
  52. assert target_size
  53. op = Resize(
  54. target_size=target_size,
  55. keep_ratio=keep_ratio,
  56. size_divisor=size_divisor,
  57. interp=interp,
  58. )
  59. return op
  60. @register("ResizeByLong")
  61. def build_resizebylong(self, long_size):
  62. assert long_size
  63. return ResizeByLong(
  64. target_long_edge=long_size, size_divisor=size_divisor, interp=interp
  65. )
  66. @register("ResizeByShort")
  67. def build_resizebylong(self, short_size):
  68. assert short_size
  69. return ResizeByLong(
  70. target_long_edge=short_size, size_divisor=size_divisor, interp=interp
  71. )
  72. @register("Normalize")
  73. def build_normalize(
  74. self,
  75. mean=0.5,
  76. std=0.5,
  77. ):
  78. return Normalize(mean=mean, std=std)
  79. def _pack_res(self, single):
  80. keys = ["img_path", "pred"]
  81. return SegResult({key: single[key] for key in keys})