| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ...utils.func_register import FuncRegister
- from ...modules.table_recognition.model_list import MODELS
- from ..components import *
- from ..results import TableRecResult
- from .base import BasicPredictor
- from ..utils.process_hook import batchable_method
- class TablePredictor(BasicPredictor):
- """table recognition predictor"""
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def _build_components(self):
- ops = {}
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- func = self._FUNC_MAP.get(tf_key)
- args = cfg.get(tf_key, {})
- op = func(self, **args) if args else func(self)
- if op:
- ops[tf_key] = op
- predictor = ImagePredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- ops["predictor"] = predictor
- key, op = self.build_postprocess(**self.config["PostProcess"])
- ops[key] = op
- return ops
- def build_postprocess(self, **kwargs):
- if kwargs.get("name") == "TableLabelDecode":
- return "TableLabelDecode", TableLabelDecode(
- merge_no_span_structure=kwargs.get("merge_no_span_structure"),
- dict_character=kwargs.get("character_dict"),
- )
- else:
- raise Exception()
- @register("DecodeImage")
- def build_readimg(self, *args, **kwargs):
- return ReadImage(batch_size=self.kwargs.get("batch_size", 1))
- @register("TableLabelEncode")
- def foo(self, *args, **kwargs):
- return None
- @register("TableBoxEncode")
- def foo(self, *args, **kwargs):
- return None
- @register("ResizeTableImage")
- def build_resize_table(self, max_len=488):
- return ResizeByLong(target_long_edge=max_len)
- @register("NormalizeImage")
- def build_normalize(
- self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- scale=1 / 255,
- order="hwc",
- ):
- return Normalize(mean=mean, std=std)
- @register("PaddingTableImage")
- def build_padding(self, size=[488, 448], pad_value=0):
- return Pad(target_size=size[0], val=pad_value)
- @register("ToCHWImage")
- def build_to_chw(self):
- return ToCHWImage()
- @register("KeepKeys")
- def foo(self, *args, **kwargs):
- return None
- def _pack_res(self, single):
- keys = ["img_path", "bbox", "structure"]
- return TableRecResult({key: single[key] for key in keys})
|