ts_cls.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from ...modules.ts_classification.model_list import MODELS
  16. from ..components import *
  17. from ..results import TSClsResult
  18. from ..utils.process_hook import batchable_method
  19. from .base import BasicPredictor
  20. class TSClsPredictor(BasicPredictor):
  21. entities = MODELS
  22. def _check_args(self, kwargs):
  23. pass
  24. def _build_components(self):
  25. preprocess = self._build_preprocess()
  26. predictor = TSPPPredictor(
  27. model_dir=self.model_dir,
  28. model_prefix=self.MODEL_FILE_PREFIX,
  29. option=self.pp_option,
  30. )
  31. return {**preprocess, "predictor": predictor}
  32. def _build_preprocess(self):
  33. if not self.config.get("info_params", None):
  34. raise Exception("info_params is not found in config file")
  35. ops = {}
  36. ops["ReadTS"] = ReadTS()
  37. if self.config.get("scale", None):
  38. scaler_file_path = os.path.join(self.model_dir, "scaler.pkl")
  39. if not os.path.exists(scaler_file_path):
  40. raise Exception(f"Cannot find scaler file: {scaler_file_path}")
  41. ops["TSNormalize"] = TSNormalize(
  42. scaler_file_path, self.config["info_params"]
  43. )
  44. ops["BuildTSDataset"] = BuildTSDataset(self.config["info_params"])
  45. ops["BuildPadMask"] = BuildPadMask(self.config["input_data"])
  46. ops["TStoArray"] = TStoArray(self.config["input_data"])
  47. return ops
  48. def _pack_res(self, single):
  49. return TSClsResult({"ts_path": single["ts_path"], "forecast": single["pred"]})